Skip to main content

Additive Approximation for Near-Perfect Phylogeny Construction

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2012, RANDOM 2012)

Abstract

We study the problem of constructing phylogenetic trees for a given set of species. The problem is formulated as that of finding a minimum Steiner tree on n points over the Boolean hypercube of dimension d. It is known that an optimal tree can be found in linear time [1] if the given dataset has a perfect phylogeny, i.e. cost of the optimal phylogeny is exactly d. Moreover, if the data has a near-perfect phylogeny, i.e. the cost of the optimal Steiner tree is d + q, it is known [2] that an exact solution can be found in running time which is polynomial in the number of species and d, yet exponential in q. In this work, we give a polynomial-time algorithm (in both d and q) that finds a phylogenetic tree of cost d + O(q 2). This provides the best guarantees known—namely, a (1 + o(1))-approximation—for the case \(\log(d) \ll q \ll \sqrt{d}\), broadening the range of settings for which near-optimal solutions can be efficiently found. We also discuss the motivation and reasoning for studying such additive approximations.

This work was supported in part by the National Science Foundation under grant CCF-1116892, by an NSF Graduate Fellowship, and by the MSR-CMU Center for Computational Thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ding, Z., Filkov, V., Gusfield, D.: A Linear-Time Algorithm for the Perfect Phylogeny Haplotyping (PPH) Problem. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 585–600. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Blelloch, G.E., Dhamdhere, K., Halperin, E., Ravi, R., Schwartz, R., Sridhar, S.: Fixed Parameter Tractability of Binary Near-Perfect Phylogenetic Tree Reconstruction. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 667–678. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press (1997)

    Google Scholar 

  4. Semple, C., Steel, M.: Phylogenetics. Oxford lecture series in mathematics and its applications. Oxford University Press (2003)

    Google Scholar 

  5. Hinds, D.A., Stuve, L.L., Nilsen, G.B., Halperin, E., Eskin, E., Ballinger, D.G., Frazer, K.A., Cox, D.R.: Whole-genome patterns of common dna variation in three human populations. Science 307(5712), 1072–1079 (2005)

    Article  Google Scholar 

  6. The international hapmap project. Nature 426(6968), 789–796 (2003)

    Google Scholar 

  7. Alon, N., Chor, B., Pardi, F., Rapoport, A.: Approximate maximum parsimony and ancestral maximum likelihood. IEEE/ACM Trans. Comput. Biol. Bioinformatics 7, 183–187 (2010)

    Article  Google Scholar 

  8. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In: SODA, pp. 770–779. Society for Industrial and Applied Mathematics (2000)

    Google Scholar 

  9. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs (2000)

    Google Scholar 

  10. Robins, G., Zelikovsky, A.: Tighter bounds for graph steiner tree approximation. SIAM Journal on Discrete Mathematics 19, 122–134 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Misra, N., Blelloch, G., Ravi, R., Schwartz, R.: Generalized Buneman Pruning for Inferring the Most Parsimonious Multi-state Phylogeny. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 369–383. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Fernández-Baca, D., Lagergren, J.: A polynomial-time algorithm for near-perfect phylogeny. SIAM J. Comput. 32, 1115–1127 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

    Chapter  Google Scholar 

  14. Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Adv. Appl. Math. 3 (1982)

    Google Scholar 

  15. Sridhar, S., Dhamdhere, K., Blelloch, G., Halperin, E., Ravi, R., Schwartz, R.: Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice. IEEE/ACM Trans. Comput. Biol. Bioinformatics 4, 561–571 (2007)

    Article  Google Scholar 

  16. Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny reconstruction. Theor. Comput. Sci. 351, 337–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Agarwala, R., Fernandez-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. In: SFCS, pp. 140–147 (November 1993)

    Google Scholar 

  18. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved lp-based approximation for steiner tree. In: STOC. ACM (2010)

    Google Scholar 

  19. Bodlaender, H.L., Fellows, M.R., Warnow, T.: Two Strikes against Perfect Phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  20. Takahashi, H., Matsuyama, A.: An approximate solution for the steiner problem in graphs. Mathematica Japonica 24, 573–577 (1980)

    MathSciNet  MATH  Google Scholar 

  21. Berman, P., Ramaiyer, V.: Improved approximations for the steiner tree problem. In: SODA, pp. 325–334 (1992)

    Google Scholar 

  22. Prömel, H.J., Steger, A.: RNC-Approximation Algorithms for the Steiner Problem. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 559–570. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  23. Karpinski, M., Zelikovsky, A.: New approximation algorithms for the steiner tree problems. Journal of Combinatorial Optimization 1, 47–65 (1995)

    Article  MathSciNet  Google Scholar 

  24. Zelikovsky, A.: Better approximation bounds for the network and euclidean steiner tree problems. Technical report (1996)

    Google Scholar 

  25. Hougardy, S., Promel, H.J.: A 1.598 approximation algorithm for the steiner problem in graphs. In: SODA, pp. 448–453 (1999)

    Google Scholar 

  26. Borchers, A., Du, D.Z.: The k-steiner ratio in graphs. In: STOC, pp. 641–649. ACM (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Awasthi, P., Blum, A., Morgenstern, J., Sheffet, O. (2012). Additive Approximation for Near-Perfect Phylogeny Construction. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2012 2012. Lecture Notes in Computer Science, vol 7408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32512-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32512-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32511-3

  • Online ISBN: 978-3-642-32512-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics