Skip to main content

A Lattice-Based Threshold Ring Signature Scheme

  • Conference paper
Progress in Cryptology – LATINCRYPT 2010 (LATINCRYPT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6212))

Abstract

In this article, we propose a new lattice-based threshold ring signature scheme, modifying Aguilar’s code-based solution to use the short integer solution (SIS) problem as security assumption, instead of the syndrome decoding (SD) problem. By applying the CLRS identification scheme, we are also able to have a performance gain as result of the reduction in the soundness error to 1/2 per round. Such gain is also maintained through the application of the Fiat-Shamir heuristics to derive signatures from our identification scheme. From security perspective we also have improvements, because our scheme exhibits a worst-case to average-case reduction typical of lattice-based cryptosystems. This gives us confidence that a random choice of parameters results in a system that is hard to break, in average.

Supported by The State of São Paulo Research Foundation under grant 2008/07949-8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Melchor, C.A., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring signature scheme based on coding theory. In: Buchmann, Ding (eds.) [10], pp. 1–16

    Google Scholar 

  3. Ajtai, M.: Generating hard instances of lattice problems. Electronic Colloquium on Computational Complexity (ECCC) 3(7) (1996)

    Google Scholar 

  4. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. Electronic Colloquium on Computational Complexity (ECCC) 3(65) (1996)

    Google Scholar 

  5. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography. Springer Publishing Company, Incorporated, Heidelberg (2008)

    Google Scholar 

  6. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the mceliece cryptosystem. In: Buchmann, Ding (eds.) [10], pp. 31–46

    Google Scholar 

  7. Boyd, C. (ed.): ASIACRYPT 2001. LNCS, vol. 2248. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  8. Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring signatures and identity based encryption in the standard model. Cryptology ePrint Archive, Report 2010/086 (2010), http://eprint.iacr.org/

  9. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Buchmann, J., Ding, J. (eds.): PQCrypto 2008. LNCS, vol. 5299. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  11. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: Improved zero-knowledge identification with lattices

    Google Scholar 

  12. Cayrel, P.-L., Véron, P.: Improved code-based identification scheme. CoRR, abs/1001.3017 (2010), http://arxiv.org/abs/1001.3017v1

  13. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Google Scholar 

  14. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a mceliece-based digital signature scheme. In: Boyd (ed.) [7], pp. 157–174

    Google Scholar 

  15. Dallot, L., Vergnaud, D.: Provably secure code-based threshold ring signatures. In: Parker, M.G. (ed.) Cryptography and Coding. LNCS, vol. 5921, pp. 222–235. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

    Google Scholar 

  20. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Swifft: A modest proposal for fft hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. In: Computational Complexity. Springer, Heidelberg (2007)

    Google Scholar 

  23. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspective, March 2002. The Kluwer International Series in Engineering and Computer Science, vol. 671. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  24. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)

    Google Scholar 

  27. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd (ed.) [7], pp. 552–565

    Google Scholar 

  28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review 41(2), 303–332 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

    Google Scholar 

  30. Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cayrel, PL., Lindner, R., Rückert, M., Silva, R. (2010). A Lattice-Based Threshold Ring Signature Scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds) Progress in Cryptology – LATINCRYPT 2010. LATINCRYPT 2010. Lecture Notes in Computer Science, vol 6212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14712-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14712-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14711-1

  • Online ISBN: 978-3-642-14712-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics