Skip to main content

Abstract

Foxtail millet, Setaria italica (L.) Beauv., is the only Setaria grown as crop. It is a small grain cereal of the Paniceae tribe. It has long been important for human consumption in China and India where it was domesticated more than 8,000 years ago. It is also grown in small quantities throughout Eurasia for some traditional uses and for feeding birds, and in Europe and America for hay and silage. The chapter describes the taxonomy, the biology, and the role in crop breeding of the few wild relatives pertaining to its gene pool complex, all known as noxious weeds. They include its putative wild ancestor, S. viridis (green foxtail), which forms the primary gene pool at a diploid level of genome A and comprises the progeny of the spontaneous hybrids between the two taxa, S. viridis ssp. pycnocoma. The secondary gene pool includes the diploid of genome B, S. adhaerans (bristly grass), and the allotetraploid AB species S. verticillata (bristly foxtail) and S. faberi (giant foxtail). This small number of wild related species was in fact seldom used for foxtail millet genetic improvement, except only in a few cases of research for male sterility and herbicide resistance. The reason for such little impetus could be due to the structure of the wild–weed–crop primary gene pool, which provided enough genetic diversity through “off-types” and the selection of many diverse landraces. In addition, their success as weeds as the consequence of intentional and unintentional weed management for over 10,000 years perhaps reduced the field of selectable beneficial traits. In contrast, wild Setaria were invaluable resources to gain better knowledge of the genome organization of the crop. Besides phylogeny, cytogenetics, genetic attributes and mating system, phenotypic variation, distribution and population genetics of the wild species as well as interspecific breeding methods are documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahanchede A, Poirier-Hamon S, Darmency H (2004) Why no tetraploid cultivar of foxtail millet? Genet Resour Crop Evol 51:227–230

    Article  Google Scholar 

  • Austin DF (2006) Fox-tail millets (Setaria: Poaceae) - abandoned food in two hemispheres. Econ Bot 60:143–158

    Article  Google Scholar 

  • Beckie HJL, Morrison IN (1993) Effect of ethalfluralin and other herbicides on trifluralin-resistant green foxtail (Setaria viridis). Weed Technol 7:6–14

    CAS  Google Scholar 

  • Benabdelmouna A, Darmency H (2003) Copia-like retrotransposon in the genus Setaria: sequence heterogeneity, species distribution and chromosomal organization. Plant Syst Evol 237:127–136

    Article  CAS  Google Scholar 

  • Benabdelmouna A, Shi Y, Abirached-Darmency M, Darmency H (2001a) Genomic in situ hybridization (GISH) discriminates between the A and B genomes in diploid and tetraploid Setaria species. Genome 44:685–690

    Article  CAS  PubMed  Google Scholar 

  • Benabdelmouna A, Abirached-Darmency M, Darmency H (2001b) Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-58S-25S rDNA genes. Theor Appl Genet 103:668–677

    Article  CAS  Google Scholar 

  • Blackshaw RE, Stobbe EH, Shayewich CF, Woodbury W (1981) Influence of soil temperature and soil moisture on S. viridis (Setaria viridis) establishment in wheat (Triticum aestivum). Weed Sci 29:179–184

    Google Scholar 

  • Brown WV (1948) A cytological study in the Gramineae. Amer J Bot 35:382–395

    Google Scholar 

  • Chapman GP (1992) Apomixis and evolution. In: Chapman GP (ed) Grass evolution and domestication. Cambridge University Press, Cambridge, UK, pp 138–156

    Google Scholar 

  • Clark LG, Pohl RW (1996) Agnes Chase’s first book of grasses, 4th edn. Smithsonian Institution Press, Washington, pp 68–69

    Google Scholar 

  • Clayton WD (1980) Setaria. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europea, Vol 5. Cambridge Univ Press, Cambridge, pp 263–264

    Google Scholar 

  • Darmency H (2003) Transgenic herbicide-resistant crops: what makes the difference? In: Lelley T, Balazs E, Tepfer M (eds) Ecological impact of GMO dissemination in agro-ecosystems. OECD, Facultas Verlag, Wien, Austria, pp 77–88

    Google Scholar 

  • Darmency H (2004) Incestuous relations of foxtail millet (Setaria italica) with its parents and cousins. In: Gressel J (ed) Crop ferality and volunteerism: a threat to food security in the transgenic era. CRC, Boca Raton, pp 81–96

    Google Scholar 

  • Darmency H, Pernès J (1985) Use of wild Setaria viridis (L) Beauv to improve triazine resistance in cultivated S. italica (L) by hybridization. Weed Res 25:175–179

    Article  CAS  Google Scholar 

  • Darmency H, Pernès J (1987) An inheritance study of domestication in foxtail millet using an interspecific cross. Plant Breed 99:30–34

    Article  Google Scholar 

  • Darmency H, Pernès J (1989) Agronomic performance of a triazine resistant foxtail millet (Setaria italica (L) Beauv). Weed Res 29:147–150

    Article  Google Scholar 

  • Darmency H, Ouin C, Pernès J (1987a) Breeding foxtail millet (Setaria italica) for quantitative traits after interspecific hybridization and polyploidization. Genome 29:453–456

    Google Scholar 

  • Darmency H, Zangre GR, Pernès J (1987b) The wild-weed-crop complex in Setaria: a hybridization study. Genetica 75:103–107

    Article  Google Scholar 

  • Darmency H, Lefol E, Chadoeuf R (1992) Risk assessment of the release of herbicide resistant transgenic crops: two plant models. In: 9th Colloque international sur la biologie des mauvaises herbes, Dijon, France, pp 513–523

    Google Scholar 

  • Darmency H, Assemat L, Wang T (1999) Millet as a model-crop to assess the impact of gene flow toward weed populations. In: Lutman P (ed) Gene flow and agriculture, relevance for transgenic crops. British Crop Protection Council Symposium Proceedings No 72, Keele, pp 261–267

    Google Scholar 

  • De Wet JMJ (1954) Chromosome numbers of a few South African grasses. Cytologia 19:97–103

    Google Scholar 

  • De Wet JMJ, Oestry-Stidd LL, Cubero JI (1979) Origins and evolution of foxtail millets (Setaria italica). J Agric Trad Bot Appl 26:53–64

    Google Scholar 

  • Dekker J (1999) Soil weed seed banks and weed management. In: Buhler D (ed) Expanding the context of weed management. Haworth, New York, USA; J Crop Prod 2:139–166

    Google Scholar 

  • Dekker J (2000) Emergent weedy foxtail (Setaria spp.) seed germinability behavior. In: Black M, Bradford KJ, Vasquez-Ramos J (eds) Seed biology: advances and applications. CAB International, Wallingford, UK, pp 411–423

    Google Scholar 

  • Dekker J (2003) The foxtail (Setaria) species-group. Weed Sci 51:641–646

    Article  CAS  Google Scholar 

  • Dekker J (2004) The evolutionary biology of the foxtail (Setaria) species-group. In: Inderjit K (ed) Weed biology and management. Kluwer Academic, Dordrecht, The Netherlands, pp 65–113

    Google Scholar 

  • Dekker JB, Atchison JK (2003) Setaria spp. seed pool formation and initial assembly in agro-communities. Asp Appl Biol 69:247–259

    Google Scholar 

  • Dekker J, Hargrove M (2002) Weedy adaptation in Setaria spp.: V. Effects of gaseous atmosphere on giant foxtail (Setaria faberii) (Gramineae) seed germination. Am J Bot 89:410–416

    Article  CAS  Google Scholar 

  • Dekker J, Luschei EC (2009) Water partitioning between environment and Setaria faberi seed exterior-interior compartments. Agric J 14604:66–76

    Google Scholar 

  • Dekker J, Dekker BI, Hilhorst H, Karssen C (1996) Weedy adaptation in Setaria spp.: IV. Changes in the germinative capacity of S. faberi embryos with development from anthesis to after abscission. Am J Bot 83:979–991

    Article  Google Scholar 

  • Dekker J, Lathrop J, Atchison B, Todey D (2001) The weedy Setaria spp. phenotype: how environment and seeds interact from embryogenesis through germination. In: Proceedings of British Crop Protection Conference–Weeds, Brighton, UK, pp 65–74

    Google Scholar 

  • Délye C, Wang T, Darmency H (2002) An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L Beauv) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta 214:421–427

    Article  PubMed  CAS  Google Scholar 

  • Délye C, Menchari Y, Michel S, Darmency H (2004) Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail. Plant Physiol 136:3920–3932

    Article  PubMed  CAS  Google Scholar 

  • Délye C, Menchari Y, Michel S (2005) A single polymerase chain reaction-based assay for simultaneous detection of two mutation conferring resistance to tubulin-binding herbicides in Setaria viridis. Weed Res 45:228–235

    Article  Google Scholar 

  • Devos KM, Wang ZM, Beales J, Sasaki T, Gale MD (1998) Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor Appl Genet 96:63–68

    Article  CAS  Google Scholar 

  • Dore WG, McNeill J (1980) Grasses of Ontario. Research Branch, Agriculture and Agri-Food Canada, Monograph 26, Hull, pp 482–494

    Google Scholar 

  • Douglas BJ, Thomas AG, Morrison IN, Maw MG (1985) The biology of Canadian weeds. 70. Setaria viridis (L.) Beauv. Can J Plant Sci 65:669–690

    Article  Google Scholar 

  • Doust AN, Kellogg EA (2002) Inflorescence diversification in the Panicoid “Bristle Grass” clade (Paniceae, Poaceae): evidence from molecular phylogenies and developmental morphology. Am J Bot 89:1203–1222

    Article  Google Scholar 

  • Doust AN, Kellogg EA (2006) Effect of genotype and environment on branching in weedy green millet (Setaria viridis) and domesticated foxtail millet (Setaria italica) (Poaceae). Mol Ecol 15:1335–1349

    Article  CAS  PubMed  Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2004) Genetic control of branching in foxtail millet. Proc Natl Acad Sci 101:9045–9050

    Article  CAS  PubMed  Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2005) The genetic basis for inflorescence variation between foxtail millet and green millet (Poaceae). Genetics 169:1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  CAS  PubMed  Google Scholar 

  • Emery WHP (1957) A study of reproduction in Setaria macrostachya and its relatives in the southwestern United States and Northern Mexico. Bull Torrey Bot Club 84:106–121

    Article  Google Scholar 

  • Fukunaga K, Domon E, Kawase M (1997) Ribosomal DNA variation in foxtail millet, Setaria italica (L.) Beauv., and a survey of variation from Europe and Asia. Theor Appl Genet 95:751–756

    Article  CAS  Google Scholar 

  • Fukunaga K, Ichitani K, Kawase M (2006) Phylogenetic analysis of the rDNA intergeneric spacer subrepeats and its implication for the domestication history of foxtail millet, Setaria italica. Theor Appl Genet 113:261–269

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Chen J (1988) Isozymic studies on the origin of cultivated foxtail millet. Acta Agric Sin 14:131–136

    Google Scholar 

  • Gasquez J, Compoint JC (1981) Observation de chloroplasts résistants aux triazines chez une panicoidée, Setaria viridis L. Agronomie 1:923–926

    Article  Google Scholar 

  • Gu SL (1987) Foxtail millet cultivation in China. China Agriculture Press, Beijing, PRC

    Google Scholar 

  • Gupta PK, Yashvir AL (1973) Abnormal meiosis in hexaploid Setaria verticillata. Phyton 15:31–36

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational taxonomy of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Heap I (2009) The international survey of herbicide resistant weeds. www.weedscience.com. Accessed 19 Nov 2009

  • Heap I, Morrison I (1996) Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in green foxtail (Setaria viridis). Weed Sci 44:25–30

    CAS  Google Scholar 

  • Hirano R, Naito K, Fukunaga K, Okumoto Y, Tanisaka T, Watanabe KN, Kawase M (2008) Genetic diversity demonstrated by transposon display in foxtail millet (Setaria italica (L.) P. Beauv.). In: 114th Meeting on Japanese Society on Breeding, Ikushugaku Kenkyu 10:238

    Google Scholar 

  • Hitchcock AS (1971) Manual of the grasses of the United States, 2nd edn, vol 2. Dover, New York, pp 724–726

    Google Scholar 

  • Hubbard FT (1915) A taxonomic study of Setaria and its immediate allies. Am J Bot 2:169–198

    Article  Google Scholar 

  • Jank L, Quesenberry KH, Sollenberger LE, Wofford DS, Lyrene PM (2007) Selection of morphological traits to improve forage characteristics of Setaria sphacelata grown in Florida. NZ J Agric Res 50:73–83

    Google Scholar 

  • Jasieniuk M, Brûlé-Babel A, Morrison I (1994) Inheritance of trifluralin resistance in green foxtail (Setaria viridis). Weed Sci 42:123–127

    CAS  Google Scholar 

  • Ji G, Du R, Hou S, Ceng R, Wang X, Zhao X (2006) Genetics, development and application of cytoplasmic herbicide resistance in foxtail millet. Sci Agric Sin 39:879–885

    Google Scholar 

  • Jia X, Zhang Z, Liu Y, Zhang C, Shi Y, Song Y, Wang T, Li Y (2009) Development and genetic mapping of SSR markers in foxtail millet (Setaria italica (L.) P. Beauv.). Theor Appl Genet 18:821–829

    Article  CAS  Google Scholar 

  • Jusuf M, Pernès J (1985) Genetic variability of foxtail millet (Setaria italica P. Beauv.). Electrophoretic study of five isoenzyme systems. Theor Appl Genet 71:385–391

    Article  Google Scholar 

  • Kawano S, Miyake S (1983) The productive and reproductive biology of flowering plants. X. Reproductive energy allocation and propagule output of five congeners of the genus Setaria (Gramineae). Oecologia 57:6–13

    Article  Google Scholar 

  • Kawase M, Sakamoto S (1982) Geographical distribution and genetic analysis of phenol color reaction in foxtail millet, Setaria italica (L.) P. Beauv. Theor Appl Genet 63:117–119

    Article  Google Scholar 

  • Kawase M, Sakamoto S (1987) Geographical distribution of landrace groups classified by intraspecific hybrid pollen sterility in foxtail millet, Setaria italica (L.) P. Beauv. Jpn J Breed 37:1–9

    Google Scholar 

  • Kihara H, Kishimoto E (1942) Bastarde zwischen Setaria italica und S. viridis. Bot Mag 56:62–67

    Google Scholar 

  • Kimata M, Kanoda M, Seetharam A (1998) Traditional and modern utilizations of millets in Japan. Environ Educ Stud 8:21–29

    Google Scholar 

  • Kimata M, Ashok EG, Seetharam A (2000) Domestication, cultivation and utilization of two small millets, Brachiaria ramosa and Setaria glauca (Poaceae), in south India. Econ Bot 54:217–227

    Google Scholar 

  • Khosla PK, Sharma ML (1973) Cytological observations on some species of Setaria. Nucleus 26:38–41

    Google Scholar 

  • Kun Y, Ma L, Lin L, Hui Z, Wei L, Wang Y, Li H, He W, Shang Z, Diao X (2008) Construction of SSR based linkage map and QTL analysis of several important traits in foxtail millet, Setaria italica Beauv.http://www.plantgenomics.cn/abslist.cgi?absid=602 . Accessed 19 Nov 2009

  • Laplante J, Rajcan I, Tardif FJ (2009) Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis. Theor Appl Genet 119:577–585

    Article  CAS  PubMed  Google Scholar 

  • Le Thierry d’Ennequin M, Panaud O, Brown S, Siljak-Yakovlev SA (1998) First evaluation of nuclear DNA content in Setaria genus by flow cytometry. J Hered 89:556–559

    Article  Google Scholar 

  • Le Thierry d’Ennequin M, Panaud O, Toupance B, Sarr A (2000) Assessment of genetic relationships between Setaria italica and its wild relative S. viridis using AFLP markers. Theor Appl Genet 100:1061–1066

    Article  Google Scholar 

  • Li Y (1995) Foxtail millet breeding. China Agriculture Press, Beijing, PRC

    Google Scholar 

  • Li Y, Wu S (1996) Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv.) landraces in China. Euphytica 87:33–38

    Article  Google Scholar 

  • Li HW, Meng CJ, Liu TN (1935) Problems in the breeding of millet (Setaria italica (L.) Beauv.). J Am Soc Agron 27:963–970

    Google Scholar 

  • Li CH, Pao WK, Li HW (1942) Interspecific crosses in Setaria. II. Cytological studies of interspecific hybrids involving: 1, S. faberii and S. italica, and 2, a three way cross, F2 of S. italica × S. viridis and S. faberii. J Hered 33:351–355

    Google Scholar 

  • Li HW, Li CH, Pao WK (1945) Cytological and genetical studies of the interspecific cross of the cultivated foxtail millet, Setaria italica (L.) Beauv., and the green foxtail millet, S. viridis L. J Am Soc Agron 37:32–54

    Google Scholar 

  • Li Y, Wu S, Cao Y (1995) Cluster analysis of an international collection of foxtail millet (Setaria italica (L.) P. Beauv.). Euphytica 83:79–85

    Article  Google Scholar 

  • Li Y, Jia J, Wang Y, Wu S (1998) Intraspecific and interspecific variation in Setaria revealed by RAPD analysis. Genet Resour Crop Evol 45:279–285

    Article  Google Scholar 

  • Linneaus C (1753) Species plantarum. Holmiae, L. Salvius, Stockholm

    Google Scholar 

  • Luo X, Guo F, Zhou J, Ma H, Wu Q, Zhu G, Ma Y (1993) Immature embryo culture of a cross between Setaria italica (Ch4n) and S. faberii and studies on the morphological and cytological characteristics of the F1 plant. Acta Agric Sin 19:352–358

    Google Scholar 

  • Manthey DR, Nalawaja JD (1982) Moisture stress effects on foxtail seed germination. Proc North Central Weed Control Conf 37:52–53

    Google Scholar 

  • Manthey DR, Nalawaja JD (1987) Germination of two foxtail (Setaria) species. Weed Technol 1:302–304

    Google Scholar 

  • Mulligan GA, Findlay JN (1970) Reproductive systems and colonization in Canadian weeds. Can J Bot 48:859–860

    Article  Google Scholar 

  • Naciri Y, Belliard J (1987) Le millet Setaria italica une plante a redécouvrir. J Agric Trad Bot Appl 34:65–87

    Google Scholar 

  • Naciri Y, Darmency H, Belliard J, Dessaint F, Pernès J (1992) Breeding strategy in foxtail millet, Setaria italica (LP Beauv), following interspecific hybridization. Euphytica 60:97–103

    Google Scholar 

  • Nakayama H, Namai H, Okuno K (1999) Geographical variation of the alleles at the two prolamin loci, Pro1 and Pro2, in foxtail millet, Setaria italica (L.) P. Beauv. Genes Genet Syst 74:293–297

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Nagamine T, Hayashi N (2005) Genetic variation of blast resistance in foxtail millet (Setaria italica (L.) P. Beauv.) and its geographic distribution. Genet Resour Crop Evol 52:863–868

    Article  Google Scholar 

  • Nasu H, Momohara A, Yasuda Y (2007) The occurrence and identification of Setaria italica (L.) P. Beauv. (foxtail millet) grains from the Chengtoushan site (ca. 5800 cal B.P.) in central China, with reference to the domestication centre in Asia. Veg Hist Archaeobot 16:481–494

    Article  Google Scholar 

  • Nguyen Van E, Pernès J (1985) Genetic diversity of foxtail millet (Setaria italica). In: Jacquard P (ed) Genetic differentiation and dispersal in plants. NATO ASI Ser G5, Springer, Berlin, pp 113–128

    Google Scholar 

  • NIAS (2009) Genebank. http://www.gene.affrc.go.jp/databases-plant_search_en.php. Accessed 19 Nov 2009

  • Niu Y, Li Y, Shi Y, Song Y, Ma Z, Wang T, Darmency H (2002) AFLP mapping for the gene conferring sethoxydim resistance in foxtail millet (Setaria italica L Beauv). Acta Agric Sin 28:359–362

    Google Scholar 

  • Norris RF, Schoner CA Jr (1980) Yellow foxtail (Setaria lutescens) biotype studies: dormancy and germination. Weed Sci 28:159–163

    Google Scholar 

  • Nurse RE, Darbyshire SJ, Bertin C, DiTommaso A (2009) The biology of Canadian weeds. 141. Setaria faberi Herrm. Can J Plant Sci 89:379–404

    Article  Google Scholar 

  • Oliver LR, Schreiber MM (1971) Differential selectivity of herbicides on six Setaria taxa. Weed Sci 19:428–431

    CAS  Google Scholar 

  • Osada T (1989) Illustrated grasses of Japan. Heibonsha Pub, Tokyo

    Google Scholar 

  • Pohl RW (1951) The genus Setaria in Iowa. Iowa State J Sci 25:501–508

    Google Scholar 

  • Pohl RW (1962) Notes on Setaria viridis and S. faberi (Gramineae). Brittonia 14:210–213

    Google Scholar 

  • Poirier-Hamon S, Pernès J (1986) Instabilité chromosomique dans les tissus somatiques des descendants d'un hybride interspécifique Setaria verticillata (P. Beauv.) × Setaria italica (P. Beauv.). CR Acad Sci (Paris) 302:319–324

    Google Scholar 

  • Povilaitis B (1956) Dormancy studies with seeds of various weed species. Proc Int Seed Testing Assoc 21:87–111

    Google Scholar 

  • Prasada Rao KE, De Wet JMJ, Brink DE, Mengesha MH (1987) Infraspecific variation and systematics of cultivated Setaria italica, foxtail millet (Poaceae). Econ Bot 41:108–116

    Google Scholar 

  • Reschly B, Dekker JH, Stoltenberg DE (1996) Comparison of seed germinability between acetyl coenzyme A carboxylase inhibitor resistant and susceptible giant foxtail. American Society of Agronomy, Madison, WI, USA, Agronomy Abstracts 6

    Google Scholar 

  • Ricroch A, Mousseau M, Darmency H, Pernès J (1987) Comparison of triazine-resistant and -susceptible cultivated Setaria italica L (PB): growth and photosynthetic capacity. Plant Physiol Biochem 25:29–34

    CAS  Google Scholar 

  • Rominger JM (1962) Taxonomy of Setaria (gramineae) in North America. Illinois Biol Monogr 29:78–98

    Google Scholar 

  • Rost TL (1973) The anatomy of the caryopsis coat in mature caryopses of the yellow foxtail grass (Setaria lutescens). Bot Gaz 134:32–39

    Article  Google Scholar 

  • Rost TL, Lersten NR (1970) Transfer aleurone cells in Setaria lutescens (Gramineae). Protoplasma 71:403–408

    Article  Google Scholar 

  • Santelmann PW, Meade JA (1961) Variation in morphological characteristics and dalapon susceptibility within the species Setaria lutescens and S. faberii. Weeds 9:406–410

    Article  Google Scholar 

  • Santleman PW, Meade JA, Peters RA (1963) Growth and development of yellow foxtail and giant foxtail. Weeds 11:139–142

    Article  Google Scholar 

  • Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24:35–68

    Article  Google Scholar 

  • Schoner CA, Norris RF, Chilcote W (1978) Yellow foxtail (Setaria lutescens) biotype studies: growth and morphological characteristics. Weed Sci 26:632–636

    Google Scholar 

  • Schontz D, Rether B (1999) Genetic variability in foxtail millet, Setaria italica (L.) P. Beauv.: Identification and classification of lines with RAPD markers. Plant Breed 118:190–192

    Article  Google Scholar 

  • Schreiber MM (1965) Effect of date of planting and stage of cutting on seed production of giant foxtail. Weeds 13:60–62

    Article  Google Scholar 

  • Schreiber MM, Oliver LR (1971) Two new varieties of Setaria viridis. Weed Sci 19:424–427

    Google Scholar 

  • Seetharam A (1998) Small millets research: achievements during 1947–97. J Agric Sci 68:431–438

    Google Scholar 

  • Shi Y, Wang T, Li Y, Darmency H (2008) Impact of transgene inheritance on the mitigation of gene flow between crops and their wild relatives: the example of foxtail millet. Genetics 180:969–975

    Article  PubMed  Google Scholar 

  • Singh RV, Gupta PK (1977) Cytological studies in the genus Setaria (gramineae). Cytologia 42:483–493

    Google Scholar 

  • Stace CA (1975) Hybridization and the flora of the British Isles. Academic Press, London

    Google Scholar 

  • Steel MG, Cavers PB, Lee SM (1983) The biology of Canadian weeds. 59. Setaria glauca (L.) Beauv. and Setaria verticillata (L.) Beauv. Can J Plant Sci 63:711–725

    Article  Google Scholar 

  • Stevens OA (1932) The number and weight of seeds produced by weeds. Am J Bot 19:784–794

    Article  Google Scholar 

  • Stoltenberg DE, Wiederholt RJ (1995) Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Sci 43:527–535

    CAS  Google Scholar 

  • Takahashi N, Hoshino T (1934) Natural crossing in Setaria italica (Beauv.). Proc Crop Sci Soc Jpn 6:3–19

    Google Scholar 

  • Taylorson RB (1986) Water stress induced germination of giant foxtail (Setaria faberi) seeds. Weed Sci 34:871–875

    Google Scholar 

  • Tela-Botanica (2009) http://www.tela-botanica.org/page:eflore. Accessed 09 Mar 2009

  • Thornhill R, Dekker J (1993) Mutant weeds of Iowa: V. S-triazine resistant giant foxtail (Setaria faberii Hermm.). J Iowa Acad Sci 100:13–14

    Google Scholar 

  • Tian X, Darmency H (2006) Rapid bidirectional allele-specific PCR identification for triazine resistance in higher plants. Pest Manag Sci 62:531–536

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Délye C, Darmency H (2006) Molecular evidence of biased inheritance of trifluralin herbicide resistance in foxtail millet. Plant Breed 125:254–258

    Article  CAS  Google Scholar 

  • Till-Bottraud I, Brabant P (1990) Inheritance of some Mendelian factors in intra- and interspecific crosses between Setaria italica and Setaria viridis. Theor Appl Genet 80:687–692

    Article  Google Scholar 

  • Till-Bottraud I, Reboud X, Brabant P, Lefranc M, Rherissi B, Vedel F, Darmency H (1992) Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops. Theor Appl Genet 83:940–946

    Article  Google Scholar 

  • Tranel D, Dekker J (2002) Differential seed germinability in triazine-resistant and -susceptible giant foxtail (Setaria faberii). Asian J Plant Sci 1:334–336

    Article  Google Scholar 

  • Upadhyaya HD, Pundir RPS, Gowda CLL, Reddy VG, Singh S (2008) Establishing a core collection of foxtail millet to enhance the utilization of germplasm of an underutilized crop. Plant Genet Resour 7:177–184

    Article  Google Scholar 

  • Varadinov SG (1986) Initial material for breeding foxtail millet. Sb Nauch Trud Prikl Bot Genet 105:103–106

    Google Scholar 

  • Volenberg DS, Stoltenberg DE (2002) Giant foxtail (Setaria faberi) outcrossing and inheritance of resistance to acetyl-coenzyme A carboxylase inhibitors. Weed Sci 50:622–627

    Article  CAS  Google Scholar 

  • Volenberg DS, Stoltenberg DE, Boerboom CM (2001) Biochemical mechanism and inheritance of cross-resistance to acetolactate synthase inhibitors in giant foxtail. Weed Sci 49:635–641

    Article  CAS  Google Scholar 

  • Wang T, Darmency H (1996) Comparison of growth and yield of foxtail millet (Setaria italica) resistant and susceptible to acetyl-coenzyme A carboxylase inhibiting herbicides. In: 10th Colloque international sur la biologie des mauvaises herbes, Dijon, France, pp 203–210

    Google Scholar 

  • Wang T, Darmency H (1997) Inheritance of sethoxydim resistance in foxtail millet, Setaria italica (L) Beauv. Euphytica 94:69–73

    Article  Google Scholar 

  • Wang RL, Dekker J (1995) Weedy adaptation in Setaria spp. II. Variation in herbicide resistance in Setaria spp. Pestic Biochem Physiol 51:99–116

    Article  CAS  Google Scholar 

  • Wang RL, Wendel JF, Dekker JH (1995a) Weedy adaptation in Setaria spp. I. Isozyme analysis of genetic diversity and population genetic structure in Setaria viridis. Am J Bot 82:308–317

    Article  Google Scholar 

  • Wang RL, Wendel JF, Dekker JH (1995b) Weedy adaptation in Setaria spp. III. Genetic diversity and population genetic structure in S. glauca, S. geniculata and S. faberii. Am J Bot 82:1031–1039

    Article  Google Scholar 

  • Wang T, Du R, Chen H, Darmency H, Fleury A (1996a) A new way of using herbicide resistant gene on hybrid utilization in foxtail millet. Sci Agric Sin 29:96

    Google Scholar 

  • Wang T, Fleury A, Ma J, Darmency H (1996b) Genetic control of dinitroaniline resistance in foxtail millet (Setaria italica). J Hered 87:423–426

    CAS  Google Scholar 

  • Wang T, Chen HB, Reboud X, Darmency H (1997) Pollen-mediated gene flow in an autogamous crop: Foxtail millet (Setaria italica). Plant Breed 116:579–583

    Article  Google Scholar 

  • Wang Z, Devos KM, Liu CJ, Wang RQ, Gale MD (1998) Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor Appl Genet 96:31–36

    Article  CAS  Google Scholar 

  • Wang R, Gao J, Liang GH (1999) Identification of primary trisomics and other aneuploids in focxtail millet. Plant Breed 118:59–62

    Article  Google Scholar 

  • Wang T, Zhao Z, Yan H, Li Y, Song Y, Ma Z, Darmency H (2001) Gene flow from cultivated herbicide-resistant foxtail millet to its wild relatives: a basis for risk assessment of the release of transgenic millet. Acta Agric Sin 27:681–687

    Google Scholar 

  • Wang T, Li Y, Shi Y, Reboud X, Darmency H, Gressel J (2004) Low frequency transmission of a plastid-encoded trait in Setaria italica. Theor Appl Genet 108:315–320

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhi H, Li W, Li H, Wang Y, Diao X (2007) Chromosome number identification of some wild Setaria species. J Plant Genet Resour 8:159–164

    Google Scholar 

  • Wang T, Picard JC, Tian X, Darmency H (2009a) A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type. Heredity. doi: 10.1038/hdy.2009.183

    Google Scholar 

  • Wang Y, Zhi H, Li W, Li H, Wang Y, Diao X (2009b) A novel genome of C and the first autotetroploid species in the Setaria genus identified by genomic in situ hybridization. Genet Resour Crop Evol 56:843–850

    Article  CAS  Google Scholar 

  • Wang T, Shi Y, Li Y, Song Y, Darmency H (2010) Population growth rate of Setaria viridis in absence of herbicide and resulting yield losses in foxtail millet. Weed Res 50:228–234

    Article  Google Scholar 

  • Wiederholt RJ, Stoltenberg DE (1996) Absence of differential fitness between giant foxtail (Setaria faberi) accessions resistant and susceptible to Acetyl-Coenzyme A Carboxylase inhibitors. Weed Sci 44:18–24

    CAS  Google Scholar 

  • Williams RD, Schreiber MM (1976) Numerical and chemotaxonomy of the green foxtail complex. Weed Sci 24:331–335

    Google Scholar 

  • Willweber-Kishimoto E (1962) Interspecific relationships in the genus Setaria. Contrib Biol Kyoto Univ 14:1–41

    Google Scholar 

  • Zangre GR, Darmency H (1993) Potential for selection in the progeny of an interspecific hybrid in foxtail millet. Plant Breed 110:172–175

    Article  Google Scholar 

  • Zhou J, Luo X, Guo F, Ma H, Zhu G (1988) Plant regeneration in tissue culture of Setaria yunnanensis × S. italica (4n) F1 plants. Acta Agric Sin 14:227–231

    Google Scholar 

  • Zhu G, Wu Q, Ma Y (1991) Breeding of new type of male sterility “Ve” in foxtail millet. J Shanxi Agric 1:7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Darmency .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Darmency, H., Dekker, J. (2011). Setaria . In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14255-0_15

Download citation

Publish with us

Policies and ethics