Skip to main content

Active Learning of Group-Structured Environments

  • Conference paper
Algorithmic Learning Theory (ALT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5254))

Included in the following conference series:

Abstract

The question investigated in this paper is to what extent an input representation influences the success of learning, in particular from the point of view of analyzing agents that can interact with their environment. We investigate learning environments that have a group structure. We introduce a learning model in different variants and study under which circumstances group structures can be learned efficiently from experimenting with group generators (actions). Negative results are presented, even without efficiency constraints, for rather general classes of groups showing that even with group structure, learning an environment from partial information is far from trivial. However, positive results for special subclasses of Abelian groups turn out to be a good starting point for the design of efficient learning algorithms based on structured representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L., Fried, K.: Approximate representation theory of finite groups. In: Proc. 32nd Annual Symposium on Foundations of Computer Science, pp. 733–742 (1991)

    Google Scholar 

  2. Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: IEEE Symposium on Foundations of Computer Science (1984)

    Google Scholar 

  3. Boone, W.W.: The Word Problem. The Annals of Mathematics 70, 207–265 (1959)

    Article  MathSciNet  Google Scholar 

  4. Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14, 318–334 (1998)

    Article  MathSciNet  Google Scholar 

  5. Friedl, K., Ivanyos, G., Santha, M.: Efficient testing of groups. In: Proc. 37th Annual ACM Symposium on Theory of Computing, pp. 157–166 (2005)

    Google Scholar 

  6. Gold, E.M.: Language identification in the limit. Inform. Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  7. Holte, R., Grajkowski, J., Tanner, B.: Hierarchical heuristic search revisited. In: Symposium on Abstraction, Reformulation and Approximation (2005)

    Google Scholar 

  8. Jaeger, H.: Observable operator models for discrete stochastic time series. Neural Computation 12, 1371–1398 (2000)

    Article  Google Scholar 

  9. Korf, R.E.: Finding optimal solutions to Rubik’s cube using pattern databases. In: AAAI/IAAI, pp. 700–705 (1997)

    Google Scholar 

  10. Korf, R.E.: Analyzing the performance of pattern database heuristics. In: Proc. 22nd AAAI Conference on Artificial Intelligence, pp. 1164–1170 (2007)

    Google Scholar 

  11. Littman, M.L., Sutton, R., Singh, S.: Predictive representations of state. In: Advances in Neural Information Processing Systems 14, pp. 1555–1561 (2002)

    Google Scholar 

  12. Novikov, P.S.: On the algorithmic undecidability of the word problem in group theory. In: Proc. Steklov Institute of Mathematics, vol. 44, pp. 1–143 (1955) (in Russian)

    Google Scholar 

  13. Rivest, R.L., Schapire, R.E.: Diversity-based inference of finite automata. J. ACM, 555–589 (1994)

    Google Scholar 

  14. Rothman, J.J.: An Introduction to the Theory of Groups. Springer, Heidelberg (1995)

    Google Scholar 

  15. Stephan, F., Ventsov, Y.: Learning algebraic structures from text. Theoret. Comput. Sci. 268(2), 221–273 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Strehl, A.L., Diuk, C., Littman, M.L.: Efficient structure learning in factored-state MDPs. In: Proc. 22nd AAAI Conference on Artificial Intelligence, pp. 645–650 (2007)

    Google Scholar 

  17. Vinodchandran, N.V.: Counting Complexity and Computational Group Theory. PhD thesis, Institute of Mathematical Sciences, Chennai, India (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartók, G., Szepesvári, C., Zilles, S. (2008). Active Learning of Group-Structured Environments. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2008. Lecture Notes in Computer Science(), vol 5254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87987-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87987-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87986-2

  • Online ISBN: 978-3-540-87987-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics