Skip to main content

Fungal Recognition by TLR2 and Dectin-1

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 183))

The innate immune system utilizes multiple receptors to recognize fungal pathogens, and the net inflammatory response is controlled by interactions between these receptors. Many fungi are recognized, at least in part, by Toll-like receptor 2 (TLR2) and Dectin-1. Examination of the roles these receptors play together and on their own is a useful model for understanding the interplay between innate immune receptors. This review focuses on the role(s) of TLR2 and Dectin-1 in triggering inflammatory responses, transcription factor activation, phagocytosis, and reactive oxygen production in response to fungi.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, Dinauer MC, Maeda N, Koyama H (2002a) Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J Infect Dis 185: 1833-1837

    Article  CAS  Google Scholar 

  • Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, Dinauer MC, Maeda N, Koyama H (2002b) Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med Mycol 40: 557-563

    Article  CAS  Google Scholar 

  • Ariizumi K, Shen GL, Shikano S, Xu S, Ritter R, 3rd, Kumamoto T, Edelbaum D, Morita A, Bergstresser PR, Takashima A (2000) Identification of a novel, dendritic cell-associated molecule, Dectin-1, by subtractive cDNA cloning. J Biol Chem 275: 20157-20167

    Article  CAS  PubMed  Google Scholar 

  • Balloy V, Si-Tahar M, Takeuchi O, Philippe B, Nahori MA, Tanguy M, Huerre M, Akira S, Latge JP, Chignard M (2005) Involvement of Toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect Immun 73: 5420-5425

    Article  CAS  PubMed  Google Scholar 

  • Barrow AD, Trowsdale J (2006) You say ITAM and I say ITIM, let’s call the whole thing off: The ambiguity of immunoreceptor signalling. Eur J Immunol 36: 1646-1653

    Article  CAS  PubMed  Google Scholar 

  • Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, Vecchi A, Mantovani A, Levitz SM, Romani L (2004) The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172: 3059-3069

    CAS  PubMed  Google Scholar 

  • Biondo C, Midiri A, Messina L, Tomasello F, Garufi G, Catania MR, Bombaci M, Beninati C, Teti G, Mancuso G (2005) MyD88 and TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans. Eur J Immunol 35: 870-878

    Article  CAS  PubMed  Google Scholar 

  • Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from Toll-like receptors. Science 304: 1014-1018

    Article  CAS  PubMed  Google Scholar 

  • Blander JM, Medzhitov R (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440: 808-812

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413: 36-37

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197: 1119-1124

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SY, Gordon S (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196: 407-412

    Article  CAS  PubMed  Google Scholar 

  • Buchanan KL, Murphy JW (1998) What makes Cryptococcus neoformans a pathogen? Emerg Infect Dis 4: 71-83

    Article  CAS  PubMed  Google Scholar 

  • Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9: 327-335

    Article  CAS  PubMed  Google Scholar 

  • Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO, Travassos LR, Smith JA, Golenbock DT, Gazzinelli RT (2001) Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 167: 416-423

    CAS  PubMed  Google Scholar 

  • Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, Kasprowicz DJ, Kellar K, Pare J, van Dyke T, Ziegler S, Unutmaz D, Pulendran B (2006) Yeast zymosan, a stimulus for TLR2 and Dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 116: 916-928

    Article  CAS  PubMed  Google Scholar 

  • Fodor S, Jakus Z, Mocsai A (2006) ITAM-based signaling beyond the adaptive immune response. Immunol Lett 104: 29-37

    Article  CAS  PubMed  Google Scholar 

  • Foster CB, Lehrnbecher T, Mol F, Steinberg SM, Venzon DJ, Walsh TJ, Noack D, Rae J, Winkelstein JA, Curnutte JT, Chanock SJ (1998) Host defense molecule polymorphisms influence the risk for immune-mediated complications in chronic granulomatous disease. J Clin Invest 102: 2146-2155

    Article  CAS  PubMed  Google Scholar 

  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by Dectin-1 and Toll-like receptor 2. J Exp Med 197: 1107-1117

    Article  CAS  PubMed  Google Scholar 

  • Gantner BN, Simmons RM, Underhill DM (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24: 1277-1286

    Article  CAS  PubMed  Google Scholar 

  • Gersuk GM, Underhill DM, Zhu L, Marr KA (2006) Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol 176: 3717-3724

    CAS  PubMed  Google Scholar 

  • Giaimis J, Lombard Y, Fonteneau P, Muller CD, Levy R, Makaya-Kumba M, Lazdins J, Poindron P (1993) Both mannose and beta-glucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. J Leukoc Biol 54: 564-571

    CAS  PubMed  Google Scholar 

  • Goodridge H, Simmons R, Underhill DM (2007) Dectin-1 stimulation by Candida albicans yeast or zymosan triggers nuclear factor of activated T cells (NFAT) activation in macrophages and dendritic cells. J Immunol (in press)

    Google Scholar 

  • Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, Forster I, Ruland J (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442: 651-656

    Article  CAS  PubMed  Google Scholar 

  • Heinsbroek SE, Taylor PR, Rosas M, Willment JA, Williams DL, Gordon S, Brown GD (2006) Expression of functionally different Dectin-1 isoforms by murine macrophages. J Immunol 176: 5513-5518

    CAS  PubMed  Google Scholar 

  • Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E, Tybulewicz V, Reis e Sousa C, Gordon S, Brown GD (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104: 4038-4045

    Article  CAS  PubMed  Google Scholar 

  • Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC, Qureshi N, Michalek SM, Vogel SN (2001) Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 69: 1477-1482

    Article  CAS  PubMed  Google Scholar 

  • Hoffman OA, Standing JE, Limper AH (1993) Pneumocystis carinii stimulates tumor necrosis factor-alpha release from alveolar macrophages through a beta-glucan-mediated mechanism. J Immunol 150: 3932-3940

    CAS  PubMed  Google Scholar 

  • Hohl TM, Van Epps HL, Rivera A, Morgan LA, Chen PL, Feldmesser M, Pamer EG (2005) Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog 1: e30

    Article  PubMed  Google Scholar 

  • Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T (2002) The mononuclear phagocyte system revisited. J Leukoc Biol 72: 621-627

    CAS  PubMed  Google Scholar 

  • Janusz MJ, Austen KF, Czop JK (1986) Isolation of soluble yeast beta-glucans that inhibit human monocyte phagocytosis mediated by beta-glucan receptors. J Immunol 137: 3270-3276

    CAS  PubMed  Google Scholar 

  • Jouault T, Ibata-Ombetta S, Takeuchi O, Trinel PA, Sacchetti P, Lefebvre P, Akira S, Poulain D (2003) Candida albicans phospholipomannan is sensed through Toll-like receptors. J Infect Dis 188: 165-172

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Adachi Y, Ohno N (2006) Contribution of N-linked oligosaccharides to the expression and functions of beta-glucan receptor, Dectin-1. Biol Pharm Bull 29: 1580-1586

    Article  CAS  PubMed  Google Scholar 

  • Kollar R, Reinhold BB, Petrakova E, Yeh HJ, Ashwell G, Drgonova J, Kapteyn JC, Klis FM, Cabib E (1997). Architecture of the yeast cell wall. Beta (1- > 6)-glucan interconnects mannoprotein, beta(1- >)3-glucan, and chitin. J Biol Chem 272: 17762-17775

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Cline MJ (1969) Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to Candida infection. J Clin Invest 48: 1478-1488

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette Sp ätzle/Toll/Cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973-983

    Article  CAS  PubMed  Google Scholar 

  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939-949

    Article  CAS  PubMed  Google Scholar 

  • Lundy SR, Dowling RL, Stevens TM, Kerr JS, Mackin WM, Gans KR (1990) Kinetics of phospholipase A2, arachidonic acid, and eicosanoid appearance in mouse zymosan peritonitis. J Immunol 144: 2671-2677

    CAS  PubMed  Google Scholar 

  • Marr KA, Patterson T, Denning D (2002) Aspergillosis. Pathogenesis, clinical manifestations, and therapy. Infect Dis Clin North Am 16: 875-894, vi

    Article  PubMed  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397

    Article  CAS  PubMed  Google Scholar 

  • Meier A, Kirschning CJ, Nikolaus T, Wagner H, Heesemann J, Ebel F (2003) Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol 5: 561-570

    Article  CAS  PubMed  Google Scholar 

  • Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH, Hartung T, Adema G, Kullberg BJ (2004a) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172: 3712-3718

    CAS  Google Scholar 

  • Netea MG, Van der Graaf C, Van der Meer JW, Kullberg BJ (2004b) Recognition of fungal pathogens by Toll-like receptors. Eur J Clin Microbiol Infect Dis 23: 672-676

    Article  CAS  Google Scholar 

  • Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ (2002) The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185: 1483-1489

    Article  CAS  PubMed  Google Scholar 

  • Netea MG, Van der Meer JW, Kullberg BJ (2006) Role of the dual interaction of fungal pathogens with pattern recognition receptors in the activation and modulation of host defence. Clin Microbiol Infect 12: 404-409

    Article  CAS  PubMed  Google Scholar 

  • Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver-Janssen TJ, Jacobs LE, Andresen T, Verweij PE, Kullberg BJ (2003) Aspergillus fumigatus evades immune recognition during germination through loss of Toll-like receptor-4-mediated signal transduction. J Infect Dis 188: 320-326

    Article  CAS  PubMed  Google Scholar 

  • Opitz B, Schroder NW, Spreitzer I, Michelsen KS, Kirschning CJ, Hallatschek W, Zahringer U, Hartung T, Gobel UB, Schumann RR (2001) Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J Biol Chem 276: 22041-22047

    Article  CAS  PubMed  Google Scholar 

  • Osumi M (1998) The ultrastructure of yeast: Cell wall structure and formation. Micron 29: 207-233

    Article  CAS  PubMed  Google Scholar 

  • Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 97: 13766-13771

    Article  CAS  PubMed  Google Scholar 

  • Pabst MJ, Johnston RB, Jr. (1980) Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide. J Exp Med 151: 101-114

    Article  CAS  PubMed  Google Scholar 

  • Palma AS, Feizi T, Zhang Y, SToll MS, Lawson AM, Diaz-Rodriguez E, Campanero-Rhodes MA, Costa J, Gordon S, Brown GD, Chai W (2006) Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem 281: 5771-5779

    Article  CAS  PubMed  Google Scholar 

  • Re F, Strominger JL (2001) Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem 276: 37692-37699

    Article  CAS  PubMed  Google Scholar 

  • Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis e Sousa C (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22: 507-517

    Article  CAS  PubMed  Google Scholar 

  • Romani L (2004) Immunity to fungal infections. Nat Rev Immunol 4: 1-23

    Article  PubMed  Google Scholar 

  • Saijo S, Fujikado N, Furuta T, Chung SH, Kotaki H, Seki K, Sudo K, Akira S, Adachi Y, Ohno N, Kinjo T, Nakamura K, Kawakami K, Iwakura Y (2007) Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 8: 39-46

    Article  CAS  PubMed  Google Scholar 

  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2: 1053-1060

    Article  CAS  PubMed  Google Scholar 

  • Steele C, Marrero L, Swain S, Harmsen AG, Zheng M, Brown GD, Gordon S, Shellito JE, Kolls JK (2003) Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J Exp Med 198: 1677-1688

    Article  CAS  PubMed  Google Scholar 

  • Steele C, Rapaka RR, Metz A, Pop SM, Williams DL, Gordon S, Kolls JK, Brown GD (2005) The beta-glucan receptor Dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 1: e42

    Article  PubMed  Google Scholar 

  • Suram S, Brown GD, Ghosh M, Gordon S, Loper R, Taylor PR, Akira S, Uematsu S, Williams DL, Leslie CC (2006) Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J Biol Chem 281: 5506-5514

    Article  CAS  PubMed  Google Scholar 

  • Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, Wong SY (2002) The beta-glucan receptor, Dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169: 3876-3882

    CAS  PubMed  Google Scholar 

  • Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23: 901-944

    Article  CAS  PubMed  Google Scholar 

  • Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8: 31-38

    Article  CAS  PubMed  Google Scholar 

  • Underhill DM (2003) Macrophage recognition of zymosan particles. J Endotoxin Res 9: 176-180

    CAS  PubMed  Google Scholar 

  • Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: Complexity in action. Annu Rev Immunol 20: 825-852

    Article  CAS  PubMed  Google Scholar 

  • Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A (1999a) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 811-815

    Article  CAS  Google Scholar 

  • Underhill DM, Ozinsky A, Smith KD, Aderem A (1999b) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 96: 14459-14463

    Article  CAS  Google Scholar 

  • Underhill DM, Rossnagle E, Lowell CA, Simmons RM (2005) Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106: 2543-2550

    Article  CAS  PubMed  Google Scholar 

  • Van der Graaf CA, Netea MG, Morre SA, Den Heijer M, Verweij PE, Van der Meer JW, Kullberg BJ (2006) Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw 17: 29-34

    CAS  PubMed  Google Scholar 

  • Vassallo R, Standing JE, Limper AH (2000) Isolated Pneumocystis carinii cell wall glucan provokes lower respiratory tract inflammatory responses. J Immunol 164: 3755-3763

    CAS  PubMed  Google Scholar 

  • Villamon E, Gozalbo D, Roig P, O’Connor JE, Fradelizi D, Gil ML (2004) Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect 6: 1-7

    Article  CAS  PubMed  Google Scholar 

  • Wheeler RT, Fink GR (2006) A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2: e35

    Google Scholar 

  • Willment JA, Gordon S, Brown GD (2001) Characterization of the human beta-glucan receptor and its alternatively spliced isoforms. J Biol Chem 276: 43818-43823

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Schorey JS (2006) The beta-glucan receptor Dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108: 3168-3175

    Article  CAS  PubMed  Google Scholar 

  • Yates RM, Russell DG (2005) Phagosome maturation proceeds independently of stimulation of Toll-like receptors 2 and 4. Immunity 23: 409-417

    Article  CAS  PubMed  Google Scholar 

  • Yauch LE, Mansour MK, Shoham S, Rottman JB, Levitz SM (2004) Involvement of CD14, Tolllike receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 72: 5373-5382

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang SH, Lasbury ME, Tschang D, Liao CP, Durant PJ, Lee CH (2006) Toll-like receptor 2 mediates alveolar macrophage response to Pneumocystis murina. Infect Immun 74: 1857-1864

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goodridge, H.S., Underhill, D.M. (2008). Fungal Recognition by TLR2 and Dectin-1. In: Bauer, S., Hartmann, G. (eds) Toll-Like Receptors (TLRs) and Innate Immunity. Handbook of Experimental Pharmacology, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72167-3_5

Download citation

Publish with us

Policies and ethics