Skip to main content

Variational Analysis of Inequality Impact Laws for Perfect Unilateral Constraints

  • Chapter
  • First Online:
Advanced Topics in Nonsmooth Dynamics

Abstract

This chapter deals with frictionless instantaneous impacts in rigid multibody dynamics. For autonomous multibody systems which are subjected to perfect unilateral constraints, a geometric description of the impacts on the respective tangent space to the configuration manifold is presented. The mass matrix of a mechanical system endows the configuration manifold with the structure of a Riemannian manifold and provides an isomorphism between the tangent space and the cotangent space at each point of the configuration manifold. Kinematic quantities (virtual displacements, velocities) are elements of the tangent space, while kinetic quantities (forces, impulsive forces) live in the cotangent space, the dual space of the tangent space. Impact laws, as constitutive laws relating primal and dual quantities, are introduced as set-valued mappings between these two spaces. Methods from Convex Analysis permit to study what the implications are if the impact law is maximal monotone. Finally, the generalized Newton’s and the generalized Poisson’s impact law are considered as illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sections 25 were written by the first author. Sections 24 gather a wealth of ideas and concepts of various authors, notably Aeberhard [3], Glocker [15, 16, 19], Ballard [5], and Moreau [34, 36] (in reverse chronological order). Sections 5 and 6 are based on the PhD thesis [6] of the second author.

References

  1. Abraham R, Marsden JE (1987) Foundations of mechanics, 2nd edn. Addison-Wesley, Boston

    Google Scholar 

  2. Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems. Applications in mechanics and electronics, vol 35. Lecture notes in applied and computational mechanics. Springer, Berlin

    Google Scholar 

  3. Aeberhard U (2008) Geometrische Behandlung idealer Stösse. Ph.D. Thesis, ETH Zurich

    Google Scholar 

  4. Aubin T (2001) A course in differential geometry, vol 27. Graduate studies in mathematics. American Mathematical Society, Providence

    MATH  Google Scholar 

  5. Ballard P (2000) The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch Ration Mech Anal 154:199–274

    Article  MathSciNet  Google Scholar 

  6. Baumann M (2017) Synchronization of nonsmooth mechanical systems with impulsive motion. Ph.D Thesis, ETH Zurich

    Google Scholar 

  7. Baumann M, Leine RI (2016) A synchronization-based state observer for impact oscillators using only collision time information. Int J Robust Nonlinear Control 26(12):2542–2563

    Article  MathSciNet  Google Scholar 

  8. Bremer H (2008) Elastic multibody dynamics: a direct ritz approach, vol 35. Intelligent systems, control, and automation: science and engineering. Springer, Berlin

    Google Scholar 

  9. Brogliato B (1999) Nonsmooth mechanics: models dynamics and control. Springer, London

    Google Scholar 

  10. de León M, Rodrigues PR (1989) Methods of differential geometry in analytical mechanics, vol 158. Elsevier

    Google Scholar 

  11. Epstein M (2010) The geometrical language of continuum mechanics. Cambridge University Press

    Google Scholar 

  12. Eugster SR (2015) Geometric continuum mechanics and induced beam theories, vol 75. Lecture notes in applied and computational mechanics. Springer, Berlin

    MATH  Google Scholar 

  13. Fischer G (2010) Lineare algebra, 17th edn. Grundkurs Mathematik: Studium. Vieweg+Teubner Verlag, Berlin

    Google Scholar 

  14. Glocker Ch (2001) On frictionless impact models in rigid-body systems. Philos Trans R Soc Lond A 359:2385–2404

    Article  MathSciNet  Google Scholar 

  15. Glocker Ch (2001) Set-valued force laws: dynamics of non-smooth systems, vol 1. Lecture notes in applied mechanics. Springer, Berlin

    Google Scholar 

  16. Glocker Ch (2006) An introduction to impacts. In: Haslinger J, Stavroulakis G (eds) Nonsmooth mechanics of solids. CISM courses and lectures, vol 485. Springer, Wien, New York, pp 45–101

    Google Scholar 

  17. Glocker Ch (2013) Energetic consistency conditions for standard impacts. Part I: Newton-type inequality impact laws and Kane’s example. Multibody Syst Dyn 29(1):77–117

    Article  MathSciNet  Google Scholar 

  18. Glocker Ch (2013) Energetic consistency conditions for standard impacts. Part II: Poisson-type inequality impact laws. Multibody Syst Dyn 32(4):1–65

    MathSciNet  MATH  Google Scholar 

  19. Glocker Ch, Aeberhard U (2006) The geometry of Newton’s cradle. In: Nonsmooth mechanics and analysis. Springer, pp 185–194

    Google Scholar 

  20. Godbillon C (1969) Géométrie Différentielle et Mécanique Analytique. Hermann, Collection Méthodes

    MATH  Google Scholar 

  21. Goebel R, Sanfelice R, Teel AR (2012) Hybrid dynamical systems: modeling, stability, and robustness. Princeton University Press

    Google Scholar 

  22. Grizzle JW, Chevallereau C, Sinnet RW, Ames AD (2014) Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica 50:1955–1988

    Google Scholar 

  23. Haddad W, Chellaboina V, Nersesov S (2006) Impulsive and hybrid dynamical systems: stability, dissipativity, and control. Princeton series in applied mathematics. Princeton University Press, Princeton

    Book  Google Scholar 

  24. Lee JM (2009) Manifolds and differential geometry, vol 107. American Mathematical Society, Providence

    Google Scholar 

  25. Lee JM (2012) Introduction to smooth manifolds, vol 218, 2nd edn. Graduate texts in mathematics. Springer, New York

    Book  Google Scholar 

  26. Leine RI, Baumann M (2014) Variational analysis of inequality impact laws. In: Proceedings of the 8th EUROMECH nonlinear dynamics conference (ENOC 2014). Vienna, Austria

    Google Scholar 

  27. Leine RI, van de Wouw N (2008) Stability and convergence of mechanical systems with unilateral constraints, vol 36. Lecture notes in applied and computational mechanics. Springer, Berlin

    Google Scholar 

  28. Liberzon D (2003) Switching in systems and control. Birkhäuser, Boston

    Book  Google Scholar 

  29. Maisser P (1991) A differential-geometric approach to the multi-body system dynamics. Zeitschrift für Angewandte Mathematik und Physik 71:T116–T119

    Google Scholar 

  30. Matveev AS, Savkin AV (2000) Qualitative theory of hybrid dynamical systems. Control engineering series. Birkhäuser, Boston

    Book  Google Scholar 

  31. Möller M (2012) Consistent integrators for non-smooth dynamical systems. Ph.D. Thesis, ETH Zurich, Switzerland

    Google Scholar 

  32. Morandi G, Ferrario C, Lo Vecchio G, Marmo G, Rubano C (1990) The inverse problem in the calculus of variations and the geometry of the tangent bundle. Phys Rep 188(3–4):147–284

    Article  MathSciNet  Google Scholar 

  33. Moreau JJ (1962) Décomposition orthogonale d’un espace hilbertien selon deux cones mutuellement polaires. Comptes Rendus de l’Académie des Sciences 255:238–240

    MATH  Google Scholar 

  34. Moreau JJ (1966) Fonctionnelles Convexes, Séminaire sur les Équations aux Dérivées Partielles, Collège de France, 1966, et Edizioni del Dipartimento di Ingeneria Civile dell’Università di Roma Tor Vergata. Roma, Séminaire Jean Leray

    Google Scholar 

  35. Moreau JJ (1987) Une formulation de la dynamique classique. Comptes rendus de l’Académie des sciences. Série II, Mécanique, Physique, Chimie, Sciences de l’univers. Sciences de la Terre 304(5):191–194

    MathSciNet  Google Scholar 

  36. Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Moreau JJ, Panagiotopoulos PD (eds) Non-smooth mechanics and applications. CISM courses and lectures. Springer, Wien, pp 1–82

    Google Scholar 

  37. Pfeiffer F (2007) The TUM walking machines. Philos Trans R Soc A: Math Phys Eng Sci 365(1850):109–131

    Article  Google Scholar 

  38. Pfeiffer F, Glocker Ch (1996) Multibody dynamics with unilateral contacts. Wiley, New York

    Book  Google Scholar 

  39. Rockafellar RT (1970) Convex analysis. Princeton mathematical series. Princeton University Press, New Jersey

    Book  Google Scholar 

  40. Rockafellar RT, Wets R-B (2009) Variational analysis. Springer, Berlin

    MATH  Google Scholar 

  41. Spivak M (1999) A comprehensive introduction to differential geometry, 3 edn., vol 1–5. Publish or Perish, Houston, Texas

    Google Scholar 

  42. van der Schaft AJ, Schumacher JM (2000) An introduction to hybrid dynamical systems, vol 251. Lecture notes in control and information sciences. Springer, London

    Google Scholar 

  43. Winandy T, Leine RI (2017) A maximal monotone impact law for the 3-ball Newton’s cradle. Multibody Syst Dyn 39(1–2):79–94

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the Fonds National de la Recherche, Luxembourg (Proj. Ref. 8864427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Winandy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Winandy, T., Baumann, M., Leine, R.I. (2018). Variational Analysis of Inequality Impact Laws for Perfect Unilateral Constraints. In: Leine, R., Acary, V., Brüls, O. (eds) Advanced Topics in Nonsmooth Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-75972-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75972-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75971-5

  • Online ISBN: 978-3-319-75972-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics