Skip to main content

Going Smart—CPPS for Digital Production

  • Chapter
  • First Online:
Industrial Internet of Things

Part of the book series: Springer Series in Wireless Technology ((SSWT))

Abstract

The Smart Factory is able to receive production orders and to control its value streams by communication between all involved elements. The whole production process is monitored by sensor systems generating a seamless blend of data that is condensed to information and key values using process models. Unknown states and critical situations are presented with full transparency to the worker that acts as the final decision maker. The required ability to gather and process information and to communicate this information to other entities is granted by Cyber-Physical Production Systems (CPPS). The structure of this article represents the pathway from data to knowledge and the subsequent knowledge exploitation. In the first part, the concepts of contemporary sensors and sensor systems are highlighted. The integration and fusion of single metering elements to measuring systems with suitable data pre-processing ensures the direct utilizability of high complex measuring data by CPPS. Actual examples of application demonstrate the implementation in production systems. The second part deals with the CPPS as the architecture for smart applications. Therefore, models are introduced as carriers of technology knowledge for the digital production. The interpretation of the measurement data in an adequate manner will empower the CPPS to adapt manufacturing processes and make the right decisions. By this, safety buffers may be reduced or quality requirements increased, as the system “knows” more about its state and boundaries. Since the final controller of the smart factory will still be a human being, CPPS also need a sound interface to the real, human world. The article closes with the introduction of tech apps that provide on the one hand an added value to the user by presenting machine states and key value and on the other hand enriches the model qualities by requesting expert knowledge from the machine operator. This finally makes the production system “smart”, as it enables the hardware of a factory to blend with the software and the human worker into one, seamless system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lee [8].

  2. 2.

    Langmann [9].

  3. 3.

    In this context, a characteristic value is the merging of many data to form it into a condensed piece of information.

  4. 4.

    Klocke [5].

  5. 5.

    Klocke [5].

  6. 6.

    Rudolph [11].

  7. 7.

    Klocke et al. [6].

  8. 8.

    Herzhoff [3].

  9. 9.

    Hardjosuwito [2].

  10. 10.

    Pitsch [10].

  11. 11.

    Hinduja and Kunieda [4].

References

  1. Acatech—Deutsche Akademie der Technikwissenschaften e.V. (Hrsg.) (2013) Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie 4.0

    Google Scholar 

  2. Hardjosuwito AF (2013) Vorhersage des lokalen Werkzeugstandweges und der Werkstückstandmenge beim Kegelradfräsen. Dissertation, RWTH Aachen. Apprimus Verlag, Aachen

    Google Scholar 

  3. Herzhoff S (2013) Werkzeugverschleiß bei mehrflankiger Spanbildung, Dissertation, RWTH Aachen. Apprimus Verlag, Aachen

    Google Scholar 

  4. Hinduja S, Kunieda M (2013) Modelling of ECM and EDM processes. CIRP Ann Manuf Technol 62:775–797

    Google Scholar 

  5. Klocke F (2014) Technologiewissen für die digitale Produktion. In: Brecher C, Klocke F, Schmitt R, Schuh G (Hrsg.) Integrative Produktion, Industrie 4.0: Aachener Perspektiven (Aachener Werkzeugmaschinenkolloquium 2014). Shaker Verlag, Aachen, pp 247–270

    Google Scholar 

  6. Klocke F, Zeis M, Harst S, Herrig T, Klink, A (2013) Analysis of the simulation accuracy of electrochemical machining processes based on the integration level of different physical effects. In: Schubert A, Hackert-Oschätzchen M (Hrsg.) NSECT 2013—international symposium on electrochemical machining technology, November 12–13, 2013, Scripts Precision and Microproduction Engineering 7, Fraunhofer IWU Chemnitz, pp 165–170

    Google Scholar 

  7. Klocke F, Joseph Y, Trächtler A, Adams O, Backmeyer M, Blattner M, Brockmann M, Eisenblätter G, Gierlings S, Henke C, Jamal R, Kamps S, Keitzel G, Schulz K, Veselovac D, Wirtz G (2014) Sensoren für die digitale Produktion. In: Brecher C, Klocke F, Schmitt R, Schuh G (Hrsg.) Integrative Produktion, Industrie 4.0: Aachener Perspektiven (Aachener Werkzeugmaschinenkolloquium 2014). Shaker Verlag, Aachen, pp 271–298

    Google Scholar 

  8. Lee K (2005) IEEE 1451: empowering the smart sensor revolution sensors. In: Conference/Expo 2005, Chicago, IL June 7, pp 1022–102

    Google Scholar 

  9. Langmann R, Stiller M (2015) Industrial cloud—status und ausblick. HMD Praxis der Wirtschaftsinformatik 52(5):647–664

    Article  Google Scholar 

  10. Pitsch M (2014) Ganzheitliche Entwicklung von Industrie-Applikationen, Doktorvortrag, RWTH Aachen

    Google Scholar 

  11. Rudolph T (2014) Adaptierbare Parametrierung von Diagnosesystemen auf Basis digitaler Antriebssignale zur Anwendung in der Prozessüberwachung, Dissertation, RWTH Aachen. Apprimus Verlag (Aachen)

    Google Scholar 

  12. Uhlmann E, Eßmann J, Winterling J-H (2012) Design- and control concept for compliant machine tools based on controller integrated models. CIRP Ann Manuf Technol 61(1):347–350

    Article  Google Scholar 

  13. Werkzeugmaschinenlabor WZL. http://www.wzl.rwth-aachen.de

Download references

Acknowledgments

The authors would like to thank the German Research Foundation DFG for the support of the depicted research within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Goetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goetz, S., Keitzel, G., Klocke, F. (2017). Going Smart—CPPS for Digital Production. In: Jeschke, S., Brecher, C., Song, H., Rawat, D. (eds) Industrial Internet of Things. Springer Series in Wireless Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42559-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42559-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42558-0

  • Online ISBN: 978-3-319-42559-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics