Skip to main content

Tailoring Technology-Agnostic Deployment Models to Production-Ready Deployment Technologies

  • Conference paper
  • First Online:
Cloud Computing and Services Science (CLOSER 2021)

Abstract

Most of existing production-ready deployment automation technologies enable declaratively specifying the target deployment for a multi-service application, which can then be automatically enforced. Each technology however relies on a different deployment modelling language, hence hampering the portability of an application deployment from one technology to another. The Essential Deployment Metamodel (EDMM) was hence developed to enable specifying an application deployment in a technology-agnostic manner, in a way that specified deployments can be automatically transformed in the technology-specific deployment artifacts enabling to deploy them with one of the 13 most prominent production-ready deployment technologies. However, not every deployment specified as EDMM model can be executed by all of these deployment technologies, e.g., Kubernetes can actually deploy applications only if their services are containerized. For this reason, this paper introduces the EDMM Tailoring Support System (EDMM TSS), which enables determining whether an application deployment can be deployed with a target technology and if this is not the case, recommending and applying model adaptations to enable deploying the application on the desired target technology. We also present a prototype implementation of the EDMM TSS, which is plugged in the existing EDMM Modeling and Transformation Framework. Moreover, we present a case study showcasing the overall benefits of the resulting EDMM-based deployment support system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/UST-EDMM.

  2. 2.

    The EDMM and technology-specific sources for all the considered deployment cases are publicly available on GitHub at https://github.com/di-unipi-socc/edmm-case-studies.

References

  1. Achilleos, A.P., et al.: The cloud application modelling and execution language. J. Cloud Comput. 8(1), 1–25 (2019). https://doi.org/10.1186/s13677-019-0138-7

    Article  Google Scholar 

  2. Agrawal, P., Rawat, N.: DevOps: a new approach to cloud development & testing. In: 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), vol. 1, pp. 1–4 (2019). https://doi.org/10.1109/ICICT46931.2019.8977662

  3. Alipour, H., Liu, Y.: Model driven deployment of auto-scaling services on multiple clouds. In: 2018 IEEE International Conference on Software Architecture Companion, pp. 93–96. 2018 IEEE International Conference on Software Architecture Companion (ICSA-C 2018) (2018). https://doi.org/10.1109/ICSA-C.2018.00033

  4. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Comput. Surv. 51(1) (2018). https://doi.org/10.1145/3150227

  5. Binz, T., et al.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 692–695. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_62

    Chapter  Google Scholar 

  6. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based runtime management of composite cloud applications. In: Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER 2013), pp. 475–482. SciTePress (2013)

    Google Scholar 

  7. Breitenbücher, U., et al.: The OpenTOSCA ecosystem - concepts & tools. In: European Space project on Smart Systems, Big Data, Future Internet - Towards Serving the Grand Societal Challenges - Volume 1: EPS Rome 2016, pp. 112–130 (2016). https://doi.org/10.5220/0007903201120130

  8. Brogi, A., et al.: EU project seaclouds - adaptive management of service-based applications across multiple clouds. In: Proceedings of the 4th International Conference on Cloud Computing and Services Science, pp. 758–763. SciTePress (2014). https://doi.org/10.5220/0004979507580763

  9. Bruneliere., H., Al-Shara., Z., Alvares., F., Lejeune., J., Ledoux., T.: A model-based architecture for autonomic and heterogeneous cloud systems. In: Proceedings of the 8th International Conference on Cloud Computing and Services Science - CLOSER, pp. 201–212. SciTePress (2018). https://doi.org/10.5220/0006773002010212

  10. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41(1), 23–50 (2011). https://doi.org/10.1002/spe.995

  11. Carrasco, J., Durán, F., Pimentel, E.: Trans-cloud: CAMP/TOSCA-based bidimensional cross-cloud. Comput. Stand. Interfaces 58, 167–179 (2018). https://doi.org/10.1016/j.csi.2018.01.005

    Article  Google Scholar 

  12. Carrasco, J., Durán, F., Pimentel, E.: Live migration of trans-cloud applications. Comput. Stand. Interfaces 69, 103392 (2020). https://doi.org/10.1016/j.csi.2019.103392

    Article  Google Scholar 

  13. Di Cosmo, R., Eiche, A., Mauro, J., Zacchiroli, S., Zavattaro, G., Zwolakowski, J.: Automatic deployment of services in the cloud with Aeolus blender. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 397–411. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0_28

    Chapter  Google Scholar 

  14. Di Cosmo, R., et al.: Automated synthesis and deployment of cloud applications. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, pp. 211–222. ACM (2014). https://doi.org/10.1145/2642937.2642980

  15. Di Nitto, E., Matthews, P., Petcu, D., Solberg, A.: Model-Driven Development and Operation of Multi-Cloud Applications: The MODAClouds Approach. Springer, Cham (2017)

    Book  Google Scholar 

  16. Docker Inc.: Compose Object. http://github.com/docker/compose-on-kubernetes (2020)

  17. Endres, C., Breitenbücher, U., Falkenthal, M., Kopp, O., Leymann, F., Wettinger, J.: Declarative vs. imperative: two modeling patterns for the automated deployment of applications. In: Proceedings of the 9th International Conference on Pervasive Patterns and Applications, pp. 22–27. Proceedings of the 9th International Conference on Pervasive Patterns and Applications, Xpert Publishing Services (2017)

    Google Scholar 

  18. Farshidi, S., Jansen, S., de Jong, R., Brinkkemper, S.: A decision support system for cloud service provider selection problem in software producing organizations. In: 2018 IEEE 20th Conference on Business Informatics, vol. 01, pp. 139–148. 2018 IEEE 20th Conference on Business Informatics (CBI 2018) (2018). https://doi.org/10.1109/CBI.2018.00024

  19. Guerriero, M., Garriga, M., Tamburri, D.A., Palomba, F.: Adoption, support, and challenges of infrastructure-as-code: insights from industry. In: 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 580–589 (2019). https://doi.org/10.1109/ICSME.2019.00092

  20. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: A service-oriented framework for developing cross cloud migratable software. J. Syst. Softw. 86(9), 2294–2308 (2013). https://doi.org/10.1016/j.jss.2012.12.033

    Article  Google Scholar 

  21. Harzenetter, L., Breitenbücher, U., Falkenthal, M., Guth, J., Krieger, C., Leymann, F.: Pattern-based deployment models and their automatic execution. In: 11th IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2018), pp. 41–52. IEEE (2018). https://doi.org/10.1109/UCC.2018.00013

  22. Harzenetter, L., Breitenbücher, U., Falkenthal, M., Guth, J., Leymann, F.: Pattern-based deployment models revisited: automated pattern-driven deployment configuration. In: Proceedings of the Twelfth International Conference on Pervasive Patterns and Applications (PATTERNS 2020), pp. 40–49. Xpert Publishing Services (2020)

    Google Scholar 

  23. Herry, H., Anderson, P., Wickler, G.: Automated planning for configuration changes. In: Proceedings of the 25th International Conference on Large Installation System Administration, pp. 57–68. Proceedings of the 25th International Conference on Large Installation System Administration, USENIX (2011)

    Google Scholar 

  24. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation. Addison-Wesley, Boston (2010)

    Google Scholar 

  25. Kamateri, E., et al.: Cloud4SOA: a semantic-interoperability PaaS solution for multi-cloud platform management and portability. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 64–78. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40651-5_6

    Chapter  Google Scholar 

  26. Khajeh-Hosseini, A., Greenwood, D., Smith, J.W., Sommerville, I.: The cloud adoption toolkit: supporting cloud adoption decisions in the enterprise. Softw.: Pract. Exp. 42(4), 447–465 (2012). https://doi.org/10.1002/spe.1072

  27. Kirschnick, J., et al.: Towards an architecture for deploying elastic services in the cloud. Softw.: Pract. Exp. 42(4), 395–408 (2012). https://doi.org/10.1002/spe.1090

  28. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-1_64

    Chapter  Google Scholar 

  29. Microsoft and Alibaba Cloud: Open Application Model. http://oam.dev (2020)

  30. Morris, K.: Infrastructure as Code: Managing Servers in the Cloud, 1st edn. O’Reilly Media, Sebastopol (2016)

    Google Scholar 

  31. OAM-dev: Kubevela. http://github.com/oam-dev/kubevela (2020)

  32. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html (2013)

  33. OASIS: TOSCA Simple Profile in YAML Version 1.2. http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html (2019)

  34. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail, and what can be done about it? In: Proceedings of the 4th Conference on USENIX Symposium on Internet Technologies and Systems. Proceedings of the 4th Conference on USENIX Symposium on Internet Technologies and Systems, USENIX (2003)

    Google Scholar 

  35. Panarello, A., Breitenbücher, U., Leymann, F., Puliafito, A., Zimmermann, M.: Automating the deployment of multi-cloud applications in federated cloud environments. In: Proceedings of the 10th EAI International Conference on Performance Evaluation Methodologies and Tools, pp. 194–201. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST) (2017). https://doi.org/10.4108/eai.25-10-2016.2266363

  36. Papazoglou, M.P., van den Heuvel, W.J.: Blueprinting the cloud. IEEE Internet Comput. 15(6), 74–79 (2011). https://doi.org/10.1109/MIC.2011.147

    Article  Google Scholar 

  37. Shahin, M., Ali Babar, M., Zhu, L.: Continuous integration, delivery and deployment: a systematic review on approaches, tools, challenges and practices. IEEE Access 5, 3909–3943 (2017). https://doi.org/10.1109/ACCESS.2017.2685629

    Article  Google Scholar 

  38. Shuaib, M., Samad, A., Alam, S., Siddiqui, S.T.: Why adopting cloud is still a challenge?—a review on issues and challenges for cloud migration in organizations. In: Hu, Y.-C., Tiwari, S., Mishra, K.K., Trivedi, M.C. (eds.) Ambient Communications and Computer Systems. AISC, vol. 904, pp. 387–399. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-5934-7_35

    Chapter  Google Scholar 

  39. Spring: Petclinic. http://github.com/spring-projects/spring-petclinic (2021)

  40. The Kubenetes Authors: Kompose. http://kompose.io (2020)

  41. Wettinger, J., Andrikopoulos, V., Leymann, F., Strauch, S.: Middleware-oriented deployment automation for cloud applications. IEEE Trans. Cloud Comput. 6(4), 1054–1066 (2018). https://doi.org/10.1109/TCC.2016.2535325

    Article  Google Scholar 

  42. Wurster, M.: EDMM in YAML specification. http://github.com/UST-EDMM/spec-yaml (2019)

  43. Wurster, M., Breitenbücher, U., Brogi, A., Diez, F., Leymann, F., Soldani, J., Wild, K.: Automating the deployment of distributed applications by combining multiple deployment technologies. In: Proceedings of the 11th International Conference on Cloud Computing and Services Science - CLOSER, pp. 178–189. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010404301780189

  44. Wurster, M., et al.: The EDMM modeling and transformation system. In: Yangui, S., et al. (eds.) ICSOC 2019. LNCS, vol. 12019, pp. 294–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45989-5_26

    Chapter  Google Scholar 

  45. Wurster, M., et al.: Technology-agnostic declarative deployment automation of cloud applications. In: Brogi, A., Zimmermann, W., Kritikos, K. (eds.) ESOCC 2020. LNCS, vol. 12054, pp. 97–112. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44769-4_8

    Chapter  Google Scholar 

  46. Wurster, M., et al.: The essential deployment metamodel: a systematic review of deployment automation technologies. SICS Softw.-Intensive Cyber-Phys. Syst. 1, 63–75 (2019). https://doi.org/10.1007/s00450-019-00412-x

    Article  Google Scholar 

  47. Wurster, M., Breitenbücher, U., Harzenetter, L., Leymann, F., Soldani, J.: TOSCA lightning: an integrated toolchain for transforming TOSCA light into production-ready deployment technologies. In: Herbaut, N., La Rosa, M. (eds.) CAiSE 2020. LNBIP, vol. 386, pp. 138–146. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58135-0_12

    Chapter  Google Scholar 

  48. Wurster, M., Breitenbücher, U., Harzenetter, L., Leymann, F., Soldani, J., Yussupov, V.: Tosca light: bridging the gap between the TOSCA specification and production-ready deployment technologies. In: Proceedings of the 10th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, pp. 216–226. INSTICC, SciTePress (2020). https://doi.org/10.5220/0009794302160226

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Soldani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soldani, J., Breitenbücher, U., Brogi, A., Frioli, L., Leymann, F., Wurster, M. (2022). Tailoring Technology-Agnostic Deployment Models to Production-Ready Deployment Technologies. In: Ferguson, D., Helfert, M., Pahl, C. (eds) Cloud Computing and Services Science. CLOSER 2021. Communications in Computer and Information Science, vol 1607. Springer, Cham. https://doi.org/10.1007/978-3-031-21637-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21637-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21636-7

  • Online ISBN: 978-3-031-21637-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics