Skip to main content

Real-time Motion Planning of Kinematically Redundant Manipulators Using Recurrent Neural Networks

  • Chapter
Recent Advances in Intelligent Control Systems

Abstract

With the wide deployment of kinematically redundant manipulators in complex working environments, obstacle avoidance emerges as an important issue to be addressed in robot motion planning. In this chapter, the inverse kinematic control of redundant manipulators for obstacle avoidance task is formulated as a convex quadratic programming (QP) problem subject to equality and inequality constraints with time-varying parameters. Compared with our previous formulation, the new scheme is more favorable in the sense that it can yield better solutions for the control problem. To solve this time-varying QP problem in real time, a recently proposed recurrent neural network, called an improved dual neural network, is adopted, which has lower structural complexity compared with existing neural networks for solving this particular problem. Moreover, different from previous work in this line where the nearest points to the links on obstacles are often assumed to be known or given, we consider the case of obstacles with convex hull and formulate another time-varying QP problem to compute the critical points on the manipulator. Since this problem is not strictly convex, an existing recurrent neural network, called a general projection neural network, is applied for solving it. The effectiveness of the proposed approaches is demonstrated by simulation results based on the Mitsubishi PA10-7C manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Gallaf, E.A.: Multi-fingered robot hand optimal task force distribution - neural inverse kinematics approach. Robot. Auton. Syst. 54(1), 34–51 (2006).

    Article  Google Scholar 

  2. Allotta, B., Colla, V., Bioli, G.: Kinematic control of robots with joint constraints. J. Dyn. Syst. Meas. Control-Trans. ASME 121(3), 433–442 (1999).

    Article  Google Scholar 

  3. Cheng, F.T., Chen, T.H., Wang, Y.S., Sun, Y.Y.: Obstacle avoidance for redundant manipulators using the compact QP method. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA), vol. 3, pp. 262–269. Atlanta, Georgia, USA (1993).

    Google Scholar 

  4. Cheng, F.T., Lu, Y.T., Sun, Y.Y.: Window-shaped obstacle avoidance for a redundant manipulator. IEEE Trans. Syst., Man, Cybern. B 28(6), 806–815 (1998).

    Article  Google Scholar 

  5. Ding, H., Chan, S.P.: A real-time planning algorithm for obstacle avoidance of redundant robots. Journal of Intelligent and Robotic Systems 16(3), 229–243 (1996).

    Article  Google Scholar 

  6. Ding, H., Tso, S.K.: Redundancy resolution of robotic manipulators with neural computation. IEEE Trans. Industrial Electronics 46(1), 230–233 (1999).

    Article  Google Scholar 

  7. Ding, H., Wang, J.: Recurrent neural networks for minimum infinity-norm kinematic control of redundant manipulators. IEEE Trans. Syst., Man, Cybern. A 29(3), 269–276 (1999).

    Article  Google Scholar 

  8. Forti, M., Nistri, P., Quincampoix, M.: Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans. Circuits Syst. I 51(9), 1741–1754 (2004).

    Article  MathSciNet  Google Scholar 

  9. Gao, X.B.: A neural network for a class of extended linear variational inequalities. Chinese Jounral of Electronics 10(4), 471–475 (2001).

    Google Scholar 

  10. Glass, K., Colbaugh, R., Lim, D., Seraji, H.: Real-time collision avoidance for redundant manipulators. IEEE Trans. Robot. Autom. 11(3), 448–457 (1995).

    Article  Google Scholar 

  11. Guo, J., Hsia, T.C.: Joint trajectory generation for redundant robots in an environment with obstacles. Journal of Robotic Systems 10(2), 199–215 (1993).

    Article  MATH  Google Scholar 

  12. Hopfield, J.J., Tank, D.W.: Computing with neural circuits: a model. Scienc 233(4764), 625– 633 (1986).

    Article  Google Scholar 

  13. Hu, X., Wang, J.: Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems. IEEE Trans. Syst., Man, Cybern. B 37(5), 1414–1421 (2007).

    Article  Google Scholar 

  14. Hu, X., Wang, J.: Solving generally constrained generalized linear variational inequalities using the general projection neural networks. IEEE Trans. Neural Netw. 18(6), 1697–1708 (2007).

    Article  Google Scholar 

  15. Hu, X., Wang, J.: An improved dual neural network for solving a class of quadratic programming problems and its k-winners-take-all application. IEEE Trans. Neural Netw. (2008). Accepted

    Google Scholar 

  16. Liu, S., Hu, X., Wang, J.: Obstacle avoidance for kinematically redundant manipulators based on an improved problem formulation and the simplified dual neural network. In: Proc. IEEE Three-Rivers Workshop on Soft Computing in Industrial Applications, pp. 67–72. Passau, Bavaria, Germany (2007).

    Google Scholar 

  17. Liu, S., Wang, J.: A simplified dual neural network for quadratic programming with its KWTA application. IEEE Trans. Neural Netw. 17(6), 1500–1510 (2006).

    Article  Google Scholar 

  18. Maciejewski, A.A., Klein, C.A.: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Intl. J. Robotics Research 4(3), 109–117 (1985).

    Article  Google Scholar 

  19. Mao, Z., Hsia, T.C.: Obstacle avoidance inverse kinematics solution of redundant robots by neural networks. Robotica 15, 3–10 (1997).

    Article  Google Scholar 

  20. Nakamura, Y., Hanafusa, H., Yoshikawa, T.: Task-priority based redundancy control of robot manipulators. Intl. J. Robotics Research 6(2), 3–15 (1987).

    Article  Google Scholar 

  21. Ohya, I., Kosaka, A., Ka, A.: Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing. IEEE Trans. Robot. Autom. 14(6), 969–978 (1998).

    Article  Google Scholar 

  22. Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. Springer-Verlag, London, U.K. (2000).

    Google Scholar 

  23. Shoval, S., Borenstein, J.: Using coded signals to benefit from ultrasonic sensor crosstalk in mobile robot obstacle avoidance. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA), vol. 3, pp. 2879–2884. Seoul, Korea (2001).

    Google Scholar 

  24. Tang, W.S., Lam, M., Wang, J.: Kinematic control and obstacle avoidance for redundant manipulators using a recurrent neural network. In: Proc. Intl. Conf. on Artificial Neural Networks, Lecture Notes in Computer Science, vol. 2130, pp. 922–929. Vienna, Austria (2001).

    Google Scholar 

  25. Tank, D.W., Hopfield, J.J.: Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 33(5), 533–541 (1986).

    Article  Google Scholar 

  26. Walker, I.D., Marcus, S.I.: Subtask performance by redundancy resolution for redundant robot manipulators. IEEE J. Robot. Autom. 4(3), 350–354 (1988).

    Article  Google Scholar 

  27. Wang, J., Hu, Q., Jiang, D.: A lagrangian network for kinematic control of redundant robot manipulators. IEEE Trans. Neural Netw. 10(5), 1123–1132 (1999).

    Article  Google Scholar 

  28. Xia, Y., Feng, G., Wang, J.: A primal-dual neural network for on-line resolving constrained kinematic redundancy in robot motion control. IEEE Trans. Syst., Man, Cybern. B 35(1), 54–64 (2005).

    Article  Google Scholar 

  29. Xia, Y., Wang, J.: A general methodology for designing globally convergent optimization neural networks. IEEE Trans. Neural Netw. 9(6), 1331–1343 (1998).

    Article  Google Scholar 

  30. Xia, Y., Wang, J.: A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans. Neural Netw. 15(2), 318–328 (2004).

    Article  MathSciNet  Google Scholar 

  31. Xia, Y., Wang, J., Fok, L.M.: Grasping force optimization of multi-fingered robotic hands using a recurrent neural network. IEEE Transactions on Robotics and Automation 20(3), 549– 554 (2004).

    Article  Google Scholar 

  32. Zhang, Y., Ge, S.S., Lee, T.H.: A unified quadratic programming based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. IEEE Trans. Syst., Man, Cybern. B 34(5), 2126–2132 (2004).

    Article  Google Scholar 

  33. Zhang, Y., Wang, J.: Obstacle avoidance for kinematically redundant manipulators using a dual neural network. IEEE Trans. Syst., Man, Cybern. B 34(1), 752–759 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

Wang, J., Hu, X., Zhang, B. (2009). Real-time Motion Planning of Kinematically Redundant Manipulators Using Recurrent Neural Networks. In: Yu, W. (eds) Recent Advances in Intelligent Control Systems. Springer, London. https://doi.org/10.1007/978-1-84882-548-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-548-2_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-547-5

  • Online ISBN: 978-1-84882-548-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics