Skip to main content

Involvement of miRNAs and Pseudogenes in Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1699))

Abstract

Our understanding of cancer pathways has been changed by the determination of noncoding transcripts in the human genome in recent years. miRNAs and pseudogenes are key players of the noncoding transcripts from the genome, and alteration of their expression levels provides clues for significant biomarkers in pathogenesis of diseases. Especially, miRNAs and pseudogenes have both oncogenic and tumor-suppressive roles in each step of cancer tumorigenesis. In this current study, association between oncogenes and miRNAs-pseudogenes was reviewed and determined in human cancer by the CellMiner web-tool.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tutar L, Tutar E, Tutar Y (2014) MicroRNAs and cancer; an overview. Curr Pharm Biotechnol 15(5):430–437

    Article  CAS  PubMed  Google Scholar 

  2. Qu J, Li M, Zhong W, Hu C (2015) Competing endogenous RNA in cancer: a new pattern of gene expression regulation. Int J Clin Exp Med 8(10):17110–17116

    PubMed  PubMed Central  Google Scholar 

  3. Poliseno L, Marranci A, Pandolfi PP (2015) Pseudogenes in human cancer. Front Med 2:68

    Article  Google Scholar 

  4. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    Article  CAS  PubMed  Google Scholar 

  5. Schoof CRG, da Silva Botelho EL, Izzotti A, dos Reis Vasques L (2012) MicroRNAs in cancer treatment and prognosis. Am J Cancer Res 2(4):414–433

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    CAS  PubMed  Google Scholar 

  7. Tutar Y, Özgür A, Tutar E, Tutar L, Pulliero A et al (2016) Regulation of oncogenic genes by MicroRNAs and pseudogenes in human lung cancer. Biomed Pharmacother 83:1182–1190

    Article  CAS  PubMed  Google Scholar 

  8. Goodhead I, Darby AC (2015) Taking the pseudo out of pseudogenes. Curr Opin Microbiol 23:102–109

    Article  CAS  PubMed  Google Scholar 

  9. Tutar Y (2012) Pseudogenes. Comp Funct Genomics 2012:6–9

    Article  Google Scholar 

  10. Korrodi-Gregório L, Abrantes J, Muller T, Melo-Ferreira J, Marcus K et al (2013) Not so pseudo: the evolutionary history of protein phosphatase 1 regulatory subunit 2 and related pseudogenes. BMC Evol Biol 13(1):242

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L et al (2011) Pseudogenes: pseudo-functional or key regulators in health and disease? RNA 17(5):792–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poliseno L (2012) Pseudogenes: newly discovered players in human cancer. Sci Signal 5(242):re5

    Article  PubMed  Google Scholar 

  13. Dweep H, Sticht C, Gretz N (2013) In-Silico algorithms for the screening of possible microRNA binding sites and their interactions. Curr Genomics 14(2):127–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shankavaram UT, Varma S, Kane D, Sunshine M, Chary KK et al (2009) CellMiner: a relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics 10:277

    Article  PubMed  PubMed Central  Google Scholar 

  15. Özgür A, Tutar L, Tutar Y (2014) Regulation of heat shock proteins by miRNAs in human breast cancer. Microrna 3(2):118–135

    Article  PubMed  Google Scholar 

  16. Baev V, Milev I, Naydenov M, Vachev T, Apostolova E et al (2014) Insight into small RNA abundance and expression in high- and low-temperature stress response using deep sequencing in Arabidopsis. Plant Physiol Biochem 84:105–114

    Article  CAS  PubMed  Google Scholar 

  17. Ribeiro AO, Schoof CRG, Izzotti A, Pereira LV, Vasques LR (2014) MicroRNAs: modulators of cell identity, and their applications in tissue engineering. Microrna 3(1):45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen C (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  Google Scholar 

  20. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  22. Hui ABY, Shi W, Boutros PC, Miller N, Pintilie M et al (2009) Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest 89(5):597–606

    Article  CAS  PubMed  Google Scholar 

  23. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q et al (2008) Small-molecule inhibitors of microRNA miR-21 function. Angew Chem Int Ed Engl 47(39):7482–7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bader AG, Brown D, Winkler M (2010) The promise of microRNA replacement therapy. Cancer Res 70(18):7027–7030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  CAS  PubMed  Google Scholar 

  28. Yong SL, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21(9):1025–1030

    Article  Google Scholar 

  29. Sampson VB, Rong NH, Han J, Yang Q, Aris V et al (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67(20):9762–9770

    Article  CAS  PubMed  Google Scholar 

  30. Muïler D, Bosserhoff A-K (2008) Integrin b 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene 27282:6698–6706

    Article  Google Scholar 

  31. Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J et al (2008) Identification of let-7-regulated oncofetal genes. Cancer Res 68(8):2587–2591

    Article  CAS  PubMed  Google Scholar 

  32. Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets dicer within its coding sequence. Proc Natl Acad Sci U S A 105(39):14879–14884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132

    Article  CAS  PubMed  Google Scholar 

  34. Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1(12):882–891

    CAS  PubMed  Google Scholar 

  35. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20(5):589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801

    Article  CAS  PubMed  Google Scholar 

  37. Garzon R, Volinia S, Liu C, Fernandez-cymering C, Palumbo T et al (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111(6):3183–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L et al (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 105(10):3945–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358

    Article  PubMed  Google Scholar 

  40. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033

    Article  CAS  PubMed  Google Scholar 

  41. Meng F, Henson R, Wehbe–Janek H, Ghoshal K, Jacob ST et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2):647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2):1026–1033

    Article  CAS  PubMed  Google Scholar 

  43. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336

    Article  CAS  PubMed  Google Scholar 

  44. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133(2):217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843

    Article  PubMed  Google Scholar 

  46. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    Article  CAS  PubMed  Google Scholar 

  47. Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A (2004) High expression of precursor MicroRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39(2):167–169

    Article  CAS  PubMed  Google Scholar 

  48. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R et al (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 102(52):19075–19080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756

    Article  CAS  PubMed  Google Scholar 

  50. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K et al (2005) A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632

    Article  CAS  PubMed  Google Scholar 

  51. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H et al (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25:2537–2545

    Article  CAS  PubMed  Google Scholar 

  52. Tsai WC, Hsu PWC, Lai TC, Chau GY, Lin CW et al (2009) MicroRNA-122, a tumor suppressor MicroRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49(5):1571–1582

    Article  CAS  PubMed  Google Scholar 

  53. Yoon SO, Chun SM, Han EH, Choi J, Jang SJ et al (2011) Deregulated expression of microRNA-221 with the potential for prognostic biomarkers in surgically resected hepatocellular carcinoma. Hum Pathol 42(10):1391–1400

    Article  CAS  PubMed  Google Scholar 

  54. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A et al (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7(6):759–764

    Article  CAS  PubMed  Google Scholar 

  55. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K et al (2010) Regression of murine lung tumors by the let-7 microRNA. Oncogene 29(11):1580–1587

    Article  CAS  PubMed  Google Scholar 

  56. Seike M, Goto A, Okano T, Bowman ED, Schetter AJ et al (2009) MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A 106(29):12085–12090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu F, Yao H, Zhu P, Zhang X, Pan Q et al (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    Article  CAS  PubMed  Google Scholar 

  58. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Si M-L, Zhu S, Wu H, Lu Z, Wu F et al (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    Article  CAS  PubMed  Google Scholar 

  60. Han HB, Gu J, Zuo HJ, Chen ZG, Zhao W et al (2012) Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. J Pathol 226(3):544–555

    Article  CAS  PubMed  Google Scholar 

  61. Akao Y, Nakagawa Y, Naoe T (2006) Let-7 MicroRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29(5):903–906

    Article  CAS  PubMed  Google Scholar 

  62. Wang F, Zhang P, Maa Y, Yang J, Moyer MP et al (2012) NIRF is frequently upregulated in colorectal cancer and its oncogenicity can be suppressed by let-7a microRNA. Cancer Lett 314(2):223–231

    Article  CAS  PubMed  Google Scholar 

  63. Chen Y, Ma C, Zhang W, Chen Z, Ma L (2014) Down regulation of miR-143 is related with tumor size, lymph node metastasis and HPV16 infection in cervical squamous cancer. Diagn Pathol 9:88

    Article  PubMed  PubMed Central  Google Scholar 

  64. Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ et al (2010) Fecal microRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev 19(7):1766–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467(7311):86–90

    Article  CAS  PubMed  Google Scholar 

  66. Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, de Keersmaecker K et al (2010) Genome-wide RNA-mediated interference screen identifies miR-19 targets in notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 12(4):372–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chaudhuri AA, So AY-L, Mehta A, Minisandram A, Sinha N et al (2012) Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proc Natl Acad Sci U S A 109(11):4233–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Han J, Li A, Liu H, Wen X, Zhao M et al (2014) Computational identification of microRNAs in the strawberry (Fragaria x Ananassa) genome sequence and validation of their precise sequences by miR-RACE. Gene 536(1):151–162

    Article  CAS  PubMed  Google Scholar 

  69. Wang M, Tan L, Dijkstra M, van Lom K, Robertus J-L et al (2008) miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and high BIC/miR-155 expression. J Pathol 215(1):13–20

    Article  CAS  PubMed  Google Scholar 

  70. Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM et al (2012) Expressed pseudogenes in the transcriptional landscape of human cancers. Cell 149(7):1622–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Welch JD, Baran-Gale J, Perou CM, Sethupathy P, Prins JF (2015) Pseudogenes transcribed in breast invasive carcinoma show subtype-specific expression and ceRNA potential. BMC Genomics 16(1):113

    Article  PubMed  PubMed Central  Google Scholar 

  72. Han L, Yuan Y, Zheng S, Yang Y, Li J et al (2014) The pan-cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nat Commun 5:3963

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors confirm that this article content has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Tutar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tutar, L., Özgür, A., Tutar, Y. (2018). Involvement of miRNAs and Pseudogenes in Cancer. In: Wu, W. (eds) MicroRNA and Cancer. Methods in Molecular Biology, vol 1699. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7435-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7435-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7433-7

  • Online ISBN: 978-1-4939-7435-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics