Skip to main content

From Fluid Particles to Physical Particles: Computing Hydrodynamics

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 292))

Abstract

The Navier-Stokes equations of hydrodynamics are partial differential equations which result from the conservation properties in simple monoatomic or molecular fluids, when combined with linear constitutive relations. When appropriate boundary conditions are applied and initial values of the variables are specified, they predict the space- and time- dependant hydrodynamic fields, that is, the values of mass density ρ, fluid velocity u, and energy density e in the fluid. The Navier-Stokes equations were written more than a century ago, and there seems to be now overall agreement that they contain sufficient physics to describe, for instance, the very complex and chaotic flows occurring in fully developed turbulence. There is little doubt that, if one were able to solve them, one could, to a very high degree of accuracy, reproduce or predict most of the flow problems that occur in physics, chemistry, and engineering applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. see also Microscopic Simulations of Complex Flows, M. Mareschal ed., NATO ASI series B: Physics, vol. 236, Plenum, New York, 1990

    Google Scholar 

  2. L. Landau and E. Lifchitz, Fluid Mechanics, Pergamon, 1958

    Google Scholar 

  3. S. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962

    Google Scholar 

  4. A. Sommerfeld, Mechanics of Deformable Bodies, vol II of Lectures on Theoretical Physics, Academic Press, 1964

    Google Scholar 

  5. B. J. Berne and R. Pecora, Dynamic Light Scattering, Wiley, New York, 1976

    Google Scholar 

  6. New Directions in Computational Fluid Dynamics, by J. P. Boris, in Ann. Rev. Fluid Mech. 21, 345, 1989

    Google Scholar 

  7. Numerical Methods for Fluid Dynamics, K. W. Morton and M. J. Baines eds., Clarendon press, Oxford, 1986

    Google Scholar 

  8. C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-verlag, Berlin, 1988

    Book  MATH  Google Scholar 

  9. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, J. Wiley, New York, 1977

    MATH  Google Scholar 

  10. P. Glandsdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley, NY, 1971

    Google Scholar 

  11. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961

    MATH  Google Scholar 

  12. P. Manneville, Structures dissipatives, Chaos et Turbulence, C.E.A., Saclay (collection alea-science), 1991

    Google Scholar 

  13. P. Résibois and M. De Leener, Classical Kinetic Theory of Fluids, John Wiley, New York, 1977

    Google Scholar 

  14. P. Résibois, J. Stat. Phys. 13, 393, 1975; see also reference 12

    Google Scholar 

  15. C. Cercignani, Theory and Application of the Boltzmann Equation, Scottisch Academic Press, Edinburgh, 1975

    MATH  Google Scholar 

  16. O. Lanford, in J. L. Lebowitz, and E. W. Montroll eds. Nonequilibrium Phenomena I. The Boltzmann Equation., North-Holland Publishing Co., Amsterdam-New York, 1983

    Google Scholar 

  17. G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics, American Mathematical Society, Providence, Rhode Island, 1963

    MATH  Google Scholar 

  18. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, 1960

    Google Scholar 

  19. S. Harris, An Introduction to the The Boltzmann Equation, Holt Rinehart and Winston, New York 1971

    Google Scholar 

  20. H. Grad, The Principles of the Kinetic Theory of Gases, Handbuch der Physik, S. Flugge ed., Springer-Verlag, Berlin, 1958

    Google Scholar 

  21. The dispersion of sound in Monoatomic Gases, by J. Foch and G. W. Ford, in Studies in Statistical Mechanics, vol. V, eds. J. de Boer and G. E. Uhlenbeck, North-Holland, Amsterdam, 1970

    Google Scholar 

  22. I. Prigogine, Physica 15, 271, 1949

    MathSciNet  ADS  Google Scholar 

  23. Actually, only the Enskog equation modified by van Beijeren and Ernst (H. van Beijeren and M. H. ernst, Physica 68, 437, 1973; Physica 70, 25, 1973) has been shown to obey an H-theorem: see M. Mareschal, J. Blawzdziewicz, J. Piasecki, Phys. Rev. Lett. 52, 1169, 1984

    Article  ADS  Google Scholar 

  24. see E. G. D. Cohen in “Statistical Mechanics at the Turn of the Decade”, E. G. D. Cohen ed., Marcel Dekker inc., New York, 1971

    Google Scholar 

  25. Rarefied Gas Dynamics, by E. P. Muntz, Ann. Rev. Fluid Mech. 21, 387 1989

    Google Scholar 

  26. G. A. Bird, Molecular Gas Dynamics, Clarendon press, Oxford, 1976

    Google Scholar 

  27. see for instance K. Nambu in Rarefied Gas Dynamics, V. Boffi and C. Cercignani eds., B. G. Teubner, Stuttgart, 1986; several variants of the original Bird“s method are discussed and compared.

    Google Scholar 

  28. W. G. Hoover, Phys. Rev. Lett. 42, 1531, 1979

    Article  ADS  Google Scholar 

  29. B. L. Holian, W. G. Hoover, B. Moran, G. K. Straub, Phys. Rev. A22, 2798, 1980

    ADS  Google Scholar 

  30. B. L. Holian, Phys. Rev. A37, 2562, 1988

    ADS  Google Scholar 

  31. T. R. Kirkpatrick, E. G. D. Cohen and J. R. Dorfman, Phys. Rev. Lett., 42, 862, 1979; 44, 472, 1980

    Article  ADS  Google Scholar 

  32. J. W. Dufty, in “Spectral Line Shapes”, P. Wende ed., de Cruger, Berlin, 1981

    Google Scholar 

  33. M. H. Ernst and E. G. D. Cohen, J. Stat. Phys., 25, 153, 1981

    Article  MathSciNet  ADS  Google Scholar 

  34. A. M. S. Tremblay, in “Recent Developments in Nonequilibrium Thermodynamics”, J. Casas-Vasquez, D. Jou and G. Lebon, eds., Springer-Verlag, Berlin, 1984

    Google Scholar 

  35. E. Fermi, J. G. Pasta and S. M. Ulam, LASL Rep. LA-1940; see also Collected Works of Enrico Fermi, 2:978, University of Chicago Press, Chicago, 1965

    Google Scholar 

  36. B. J. Alder and T. E. Wainwright in Transport Processes in Statistical Mechanics, I. Prigogine Ed., Interscience, New York, 1958

    Google Scholar 

  37. MolecularDynamics Simulation of Statistical Mechanical Systems, G. Ciccotti and W. G. Hoover, Eds., North Holland, 1986

    Google Scholar 

  38. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987

    MATH  Google Scholar 

  39. J. J. Erpenbeck, W. W. Wood, in Modern Theoretical Chemistry, edited by B. J. Berne, vol. 6B, Van Nostrand-Reinhold, New York (1983) and other contributions in this book

    Google Scholar 

  40. A. Rahman, Phys. Rev. 136, 405, 1964

    Article  ADS  Google Scholar 

  41. D. Levesque and L. Verlet, Phys. Rev. A2, 2514, 1970

    ADS  Google Scholar 

  42. J. A. Barker, D. E. Henderson, Rev. Mod. Phys. 48, 587, 1976

    Article  MathSciNet  ADS  Google Scholar 

  43. F. H. Ree, J. Chem. Phys. 73, 5401, 1980

    Article  ADS  Google Scholar 

  44. a. D. Levesque, L. Verlet, J. Kurkijarvi, Phys. Rev. A7, 1690, 1973

    ADS  Google Scholar 

  45. B. J. Alder, D. M. Gass and T. E. Wainwright, J. Chem. Phys., 53, 3813, 1970

    Article  ADS  Google Scholar 

  46. J. P. Hansen, I. R. MacDonald, Theory of Simple Liquids, Academic Press, New York, 1976

    Google Scholar 

  47. see for example Computer Simulations in Materials Sciences, M. Meyer and V. Pontikis eds., Kluwer Academic Publishers, Amsterdam, 199

    Google Scholar 

  48. D. Massignon, Mécanique Statistique des Fluides, Dunod, Paris, 1957

    Google Scholar 

  49. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817, 1950

    Article  MathSciNet  ADS  Google Scholar 

  50. J. S. Rowlinson, B. Widom, The Molecular Theory of Capillarity, Clarendon, Oxford, 1982

    Google Scholar 

  51. R. Zwanzig, Ann. Rev. Phys. Chem. 16, 67, 1965

    Article  ADS  Google Scholar 

  52. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York, 1975

    MATH  Google Scholar 

  53. L. P. Kadanoff and P. C. Martin, Annals of Physics 24, 419, 1963

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. R. Zwanzig and M. Bixon, Phys. Rev. A2, 2005, 1970

    ADS  Google Scholar 

  55. N. K. Ailawadi, A. Rahman and R. Zwanzig, Phys. Rev A4, 1616, 1971

    ADS  Google Scholar 

  56. R. Vogelsang and C. Hoheisel, Mol. Phys. 55, 1339, 1985

    Article  ADS  Google Scholar 

  57. J. P. Boon, S. Yip, Molecular Hydrodynamics, MacGraw-Hill, New York, 1980

    Google Scholar 

  58. W. E. Alley and B. J. Alder, Phys. Rev. A27, 3158, 1983

    ADS  Google Scholar 

  59. W. E. Alley, B. J. Alder and S. Yip, Phys. Rev. A27, 3174, 1983

    ADS  Google Scholar 

  60. Y. Pomeau and P. Résibois, Phys. Rep. C19, 63, 1975

    Article  ADS  Google Scholar 

  61. J. J. Erpenbeck and W. W. Wood, J. Stat. Phys. 24, 455, 1981

    Article  ADS  Google Scholar 

  62. C. Hoheisel and C. Vogelsang, Comp. Phys. Rep. 8, 1, 1988

    Article  ADS  Google Scholar 

  63. W. T. Ashurst and W. G. Hoover, Phys. Rev. Lett. 31, 206, 1973; Phys. Rev. A11, 658, 1975

    Article  ADS  Google Scholar 

  64. W. G. Hoover and W. T. Ashurst, Adv. Theor. Chem. 1, 1, 1975

    Google Scholar 

  65. L. P. Kadanoff, G. McNamara and L. Zanetti, Phys. Rev. B40, 4527, 1989

    ADS  Google Scholar 

  66. G. Ciccotti, G. Jacucci and I. R. McDonald, Phys. Rev. A13, 426, 1976

    ADS  Google Scholar 

  67. B. L. Holian and D. J. Evans, J. Chem. Phys. 83, 241, 1985

    Article  ADS  Google Scholar 

  68. G. Ciccotti, G. Iaccucci and I. R. McDonald, J. Stat. Phys. 21, 1, 1979

    Article  ADS  Google Scholar 

  69. A. W. Lees and S. F. Edwards, J. Phys. C5, 1921, 1972

    ADS  Google Scholar 

  70. D. J. Evans, G. P. Morris, Comp. Phys. Rep. 1, 297, 1984

    Article  ADS  Google Scholar 

  71. W. G. Hoover, Computational Statistical Mechanics, Elsevier, Amsterdam, 1991

    Google Scholar 

  72. W. G. Hoover, Molecular Dynamics, Lecture Notes in Physics, 258, Springer-Verlag, Berlin, 1986

    Google Scholar 

  73. D. J. Evans, G. P. Moriss, Statistical Mechanics of Nonequilibrium Liquids, Academic Press, London, 1990

    MATH  Google Scholar 

  74. S. Nosé, J. Chem. Phys. 81, 511, 1984; Mol. Phys. 52, 255, 1984

    Article  ADS  Google Scholar 

  75. W. G. Hoover, Phys. Rev. A31, 1695, 1985

    ADS  Google Scholar 

  76. a. W. G. Hoover and W. T. Ashurst, in Theoretical Chemistry, vol 1: Advances and perspectives, H. Eyring and D. Henderson eds., Academic Press, New York, 1975

    Google Scholar 

  77. A. Tenenbaum, G. Ciccotti, R. Gallico, Phys. Rev. A25, 2778, 1982

    ADS  Google Scholar 

  78. C. Trozzi and G. Ciccotti, Phys. Rev. A29, 916, 1984

    ADS  Google Scholar 

  79. P. J. Clause, M. Mareschal, Phys. Rev. A38, 4241, 1988

    ADS  Google Scholar 

  80. Nonlinear Fluid Behavior, H. J. M. Hanley editor, proceedings of the conference held at the University of Colorado, Boulder, USA, June 1982, special issue of Physcia 118A, 1-3, 1983

    Google Scholar 

  81. see also the special issue on non-equilibrium fluids of Physics Today, volume 37 in 1984

    Google Scholar 

  82. W. Loose and S. Hess, Rheol. Acta 28, 91, 1989. See also the references cited therein.

    Article  Google Scholar 

  83. M. J. Gillan, M. Dixon, J. Chem. Phys. 72, 2384, 1980

    Article  Google Scholar 

  84. D. J. Evans, Phys. Lett. A91, 457, 1982

    ADS  Google Scholar 

  85. D. J. Evans and W. G. Hoover, Ann. Rev. Fluid Mech. 18, 243, 1986

    Article  MathSciNet  ADS  Google Scholar 

  86. J. Koplik, J. R. Banavar, J. F. Willemsen, Phys. Rev. Lett. 60, 1282, 1988; Phys. Fluids. Al, 781, 1989

    Article  ADS  Google Scholar 

  87. D. C. Rapaport, E. Clementi, Phys. Rev. Lett. 57, 695, 1987

    Article  ADS  Google Scholar 

  88. L. Hannon, G. Lie and E. Clementi, J. Sc. Comp. l, 145, 1986

    Article  Google Scholar 

  89. M. Mareschal, E. Kestemont, Nature, 323, 427, 1987; J. Stat. Phys. 48, 1187, 1987

    Article  ADS  Google Scholar 

  90. D. C. Rapaport, Phys. Rev. Lett. 60, 2480, 1988; Phys. Rev. A36, 3288, 1987

    Article  ADS  Google Scholar 

  91. A. Puhl, M. Malek Mansour and M. Mareschal, Phys. Rev. A 40, 1999, 1989

    ADS  Google Scholar 

  92. E. Meiburg, Phys. Fluids 29, 3107, 1986

    Article  ADS  Google Scholar 

  93. G. A. Bird, Phys. Fluids, 30, 364, 1987

    Article  ADS  Google Scholar 

  94. M. Mareschal, M. Malek Mansour, A. Puhl, E. Kestemont, Phys. Rev. Lett. 61, 2550, 1988

    Article  ADS  Google Scholar 

  95. U. Frish, B. Hasslacher, Y. Pomeau, Phys. Rev. Lett. 56, 1505, 1986

    Article  ADS  Google Scholar 

  96. U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, J. P. Rivet, Complex Systems 1, 649, 1987

    MathSciNet  MATH  Google Scholar 

  97. C. Burges and S. Zaleski, Complex Systems 1, 31, 1987: in this paper, the authors report on the computation of Bénard convection which took a few minutes on a workstation, while the MD simulation of the same pattern presented in reference 89, for example, took a few hours on a supercomputer.

    MathSciNet  MATH  Google Scholar 

  98. V. Yakhot and S. A. Orszag, Phys. Rev. Lett. 56, 1691, 1986

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mareschal, M., Holian, B.L. (1992). From Fluid Particles to Physical Particles: Computing Hydrodynamics. In: Mareschal, M., Holian, B.L. (eds) Microscopic Simulations of Complex Hydrodynamic Phenomena. NATO ASI Series, vol 292. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2314-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2314-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2316-5

  • Online ISBN: 978-1-4899-2314-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics