Skip to main content

Computational Analysis of Collective Behaviors via Agent-Based Modeling

  • Chapter
  • First Online:
Handbook of Human Computation
  • 3332 Accesses

Abstract

Agent-based modeling (ABM) is a common computational analysis tool to study system dynamics. In the framework of ABM, the system consists of multiple autonomous and interacting agents. We can explore emergent collective patterns by simulating the individual operations and interactions between agents. As a case study, we present an experiment using an agent-based model to study how competition for limited user attention in a social network results in collective patterns of meme popularity. The model is inspired by the long tradition that represents information spreading as an epidemic process, where infection is passed along the edges of the underlying social network. The model also builds upon empirical observations on how individual humans behave online. The combination of social network structure and finite agent attention is sufficient for the emergence of broad diversity in meme popularity and lifetime. The case study illustrates how one can analyze the kind of emergent human computation that makes some memes very popular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asur S, Huberman BA, Szabo G, Wang C (2011) Trends in social media: persistence and decay. In: Proceedings of international AAAI conference on weblogs and social media, Menlo Park

    Google Scholar 

  • Axelrod R (1997) The complexity of cooperation: agent-based models of competition and collaboration. Princeton University Press, Princeton

    Google Scholar 

  • Bakshy E, Mason WA, Hofman JM, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of ACM international conference on web search and data mining, Hong Kong

    Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random graphs. Science 286:509–511

    Article  MathSciNet  Google Scholar 

  • Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci 99(Suppl 3):7280–7287

    Article  Google Scholar 

  • Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social dynamics. Rev Mod Phys 81(2):591

    Article  Google Scholar 

  • Crane R, Sornette D (2008) Robust dynamic classes revealed by measuring the response function of a social system. Proc Natl Acad Sci 105(41):15649–15653

    Article  Google Scholar 

  • Dawkins R (1989) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Dunbar RIM (1998) The social brain hypothesis. Evol Anthr 6:178–190

    Article  Google Scholar 

  • Erdös P, Rényi A (1960) On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5:17–61

    MATH  Google Scholar 

  • Goetz M, Leskovec J, McGlohon M, Faloutsos C (2009) Modeling blog dynamics. In: Proceedings of international AAAI conference on weblogs and social media, San Jose

    Google Scholar 

  • Gonçalves B, Perra N, Vespignani A (2011) Validation of dunbar’s number in twitter conversations. PLOS One 6:e22656

    Article  Google Scholar 

  • Granovetter M (1973) The strength of weak ties. Am J Sociol 78:1360–1380

    Article  Google Scholar 

  • Holme P, Newman MEJ (2006) Nonequilibrium phase transition in the coevolution of networks and opinions. Phys Rev E 74(5)

    Google Scholar 

  • Ienco D, Bonchi F, Castillo C (2010) The meme ranking problem: maximizing microblogging virality. In: Proceedings of IEEE international conference on data mining workshop, Sydney, pp 328–335

    Google Scholar 

  • Lazer D, Pentland A, Adamic L, Aral S, Barabási AL, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D, Alstyne MV (2009) Computational social science. Science, 323(5915):721–723

    Article  Google Scholar 

  • Lerman K, Ghosh R (2010) Information contagion: an empirical study of the spread of news on digg and twitter social networks. In: Proceedings of international AAAI conference on weblogs and social media, Washington DC

    Google Scholar 

  • Leskovec J, Backstrom L, Kumar R, Tomkins A (2008) Microscopic evolution of social networks. In: Proceedings of SIGKDD international ACM conference on knowledge discovery and data mining, Las Vegas, pp 462–470

    Google Scholar 

  • McPherson M, Lovin L, Cook J (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27(1):415–444

    Article  Google Scholar 

  • Moussaid M, Helbing D, Theraulaz G (2009) An individual-based model of collective attention. In: Proceedings of European conference on complex systems, Warwick

    Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3203

    Article  Google Scholar 

  • Simon H (1971) Designing organizations for an information-rich world. In: Greenberger M (eds) Computers, communication, and the public interest. Johns Hopkins, Baltimore, pp 37–52

    Google Scholar 

  • Shi X, Adamic LA, Strauss MJ (2007) Networks of strong ties. Physica A 378:3347

    Article  Google Scholar 

  • Sun X, Kaur J, Milojevic S, Flammini A, Menczer F (2013) Social dynamics of science. Sci Rep 3(1069)

    Google Scholar 

  • Vespignani A (2009) Predicting the behavior of techno-social systems. Science 325(5939):425–428

    Article  MathSciNet  MATH  Google Scholar 

  • Watts DJ (2002) A simple model of global cascades on random networks. Proc Natl Acad Sci 99(9):5766–5771

    Article  MathSciNet  MATH  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393: 440–442

    Article  Google Scholar 

  • Weng L, Flammini A, Vespignani A, Menczer F (2012) Competition among memes in a world with limited attention. Sci Rep 2:335

    Article  Google Scholar 

  • Wu F, Huberman BA (2007) Novelty and collective attention. Proc Natl Acad Sci 104(45):17599–17601

    Article  Google Scholar 

  • Yang L, Sun T, Mei Q (2012) We know what @you #tag: does the dual role affect hashtag adoption? In: Proceedings of international ACM world wide web conference, Lyon

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian Weng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weng, L., Menczer, F. (2013). Computational Analysis of Collective Behaviors via Agent-Based Modeling. In: Michelucci, P. (eds) Handbook of Human Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8806-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8806-4_61

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8805-7

  • Online ISBN: 978-1-4614-8806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics