Skip to main content

A Triangle Model: Environmental Changes Affect Biofilms that Affect Larval Settlement

  • Chapter
Marine and Industrial Biofouling

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 4))

Biofilms are ubiquitous — covering every exposed surface in marine environment and thus playing a key role in mediating biotic interactions and biogeochemical activities occurring on the surfaces. For the propogates of marine organisms, biofilm attributes serve as inhibitive or inductive cues for the attachment of settling larvae and algal spores of potential colonizers. Microbes in biofilms are not only the sources of chemical cues but also consumers of chemical cues. As microbes in biofilm are very sensitive to changes in ambient environment, the production of chemical cues by the microbes will change in response to spatio-temporal variation of microbial density, community structure, topography, dynamics, and the microbial physiological conditions in biofilms. These lead to changes in physical and chemical biofilm properties and in the bioactivity of biofilm for attachment of marine propogates. While there have been a number of reviews on the effect of biofilms on settlement of marine invertebrate larvae and algal spores, the effects of environmental changes on microbial community structure dynamics and bioactivities of biofilms remain much unexplored. Recent advances in molecular fingerprinting techniques have made it possible to precisely study the linkage between environmentally driven changes in biofilms and larval settlement. We are now gaining a better picture of the triangle relationship between environmental variables, biofilm dynamics and bioactivity, and the behavior of settling larvae or spores of marine organisms. Here, we would like to formally introduce a triangle model to provide a conceptual framework for interactions between environmentally induced biofilm changes that in turn affect the settlement of dispersal propogates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson MJ (1995) Variations in biofilms colonizing artificial surfaces: seasonal effects and effects of grazers. J Mar Biol Assoc UK 75:705–714

    Google Scholar 

  • Armstrong E, Yan L, Boy KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40

    Article  Google Scholar 

  • Beech IB, Gubner R, Zinkevich V, Hanjangsit L, Avci R (2000) Characterisation of conditioning layers formed by exopolymeric substances of Pseudomonas NCIMB 2021 on surfaces of AISI 316 stainless steel. Biofouling 16(2–4):93–104

    CAS  Google Scholar 

  • Butler AJ, Chesson PL (1990) Ecology of sessile animals on subtidal hard substrata: the need to measure variation. Aust J Ecol 15:521–531

    Article  Google Scholar 

  • Caldwell DE, Korber DR, Lawrence JR (1993) Analysis of biofilm formation using 2D vs 3D imaging. J Appl Bacteriol Symp Suppl 74:52–66

    Google Scholar 

  • Callow ME, Callow JA (2000) Substratum location and zoospore behavior in the fouling alga Enteromorpha Biofouling 15:49–56

    Google Scholar 

  • Characklis WG, Marshall KC (1990) Biofilms: a basis for an interdisciplinary approach. In: Characklis WG, Marshall KC (eds.) Biofilms. Wiley, New York, pp. 3–15

    Google Scholar 

  • Chia FS (1989) Differential larval settlement of benthic marine invertebrates. In: Ryland JS, Tyler PA (eds.) Reproduction, genetics and distributions of marine organisms. Olsen and Olsen, Fredensborg, Denmark, pp. 3–12

    Google Scholar 

  • Chiu JMY, Thiyagarajan V, Tsoi MMY, Qian P-Y (2006) Qualitative and quantitative changes in marine biofilms as a function of temperature and salinity in summer and winter. Biofilms 1 – 13

    Google Scholar 

  • Clare AS, Rittschof D, Gerhart DJ, Maki JS (1992) Molecular approaches to nontoxic antifouling. Invert Reprod Develop 22(1–3):67–76

    CAS  Google Scholar 

  • Cooksey KE, Wigglesworth-Cooksey B (1995) Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquat Microbial Ecol 9:87–96

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, de Berr D, Caldwell D, Kroner D, James G (1995) Microbial Biofilms. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • Dahms HU, Qian PY (2005) Exposure of biofilms to meiofaunal copepods affects the larval settlement of Hydroides elegans (Polychaeta). Mar Ecol Prog Ser 297:203–214

    Article  Google Scholar 

  • Dahms HU, Dobretsov S, Qian PY (2004) The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina J Exp Mar Biol Ecol 313:191–209

    Article  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Ann Rev 28:73–153

    Google Scholar 

  • Dobretsov S, Qian PY (2004) The role of epibotic bacteria from the surface of the soft coral Dendronephthya sp. in the inhibition of larval settlement. J Exp Mar Biol Ecol 299:35–50

    Article  Google Scholar 

  • Dobretsov S, Qian PY (2006) Facilitation and inhibition of larval attachment of the bryozoan Bugula neritina in association with mono-species and multi-species biofilms. J Exp Mar Biol Ecol 333:263–264

    Article  Google Scholar 

  • Dobretsov S, Dahms HU, Qian PY (2006) Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22:43–45

    Article  PubMed  CAS  Google Scholar 

  • Dobretsov S, Dahms HU, Huang YL, Wahl M, Qian PY (2007) The effect of quorum sensing blockers on the formation of marine microbial communities and larval attachment. FEMS Microbiol Ecol 60:177–188

    Article  PubMed  CAS  Google Scholar 

  • Fenchel T (1998) Formation of laminated cyanobacterial mats in the absence of benthic fauna. Aquat Microbiol Ecol 14:235–240

    Article  Google Scholar 

  • Gordon JW (1999) Genetic enhancement in humans. Science 283 (5410):2023

    Article  PubMed  CAS  Google Scholar 

  • Hadfield MG, Paul VJ (2001) Natural chemical cues for settlement and metamorphosis of marine-invertebrate larvae: 431–461. In: McClintock JB, Baker BJ (eds.) Marine chemical ecology. CRC, Boca Raton, pp. 1–610

    Google Scholar 

  • Harder T, Lam C, Qian PY (2002a) Induction of larval settlement in the polychaete Hydroides elegans by marine biofilms: an investigation of monospecific diatom films as settlement cues. Mar Ecol Prog Ser 229:105–112

    Article  Google Scholar 

  • Henschel JR, Cook PA (1990) The development of a marine fouling community in relation to the primary film of microorganisms. Biofouling 2:1–11

    Google Scholar 

  • Holmstrøm C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce active extracellular compounds. FEMS Microbiol Ecol 30:285–293

    PubMed  Google Scholar 

  • Holmstrøm C, Kjelleberg S (2000) Bacterial interactions with marine fouling organisms. In: Evans LV (ed.) Biofilms: recent advances in their study. Harwood Academic, Amsterdam, pp. 101–117

    Google Scholar 

  • Holmstrøm C, Rittschof D, Kjelleberg S (1992) Inhibition of settlement by larvae of Balanus amphitrite and Cliona intestinalis by a surface-colonizing marine bacterium. Appl Environ Microb 58:2111–2115

    Google Scholar 

  • Huang YL, Dobretsov S, Ki JS, Yang LH, Qian PY (2007a) Presence of acyl-homoserine lactone in subtidal biofilm and the implication in larval behavioral response in the polychaete Hydroides elegans Microbial Ecol 54:384–392

    Article  CAS  Google Scholar 

  • Huang YL, Dobretsov SV, Xiong HR, Qian PY (2007b) Effect of biofilm formation by Pseudoalteromonas spongiae on induction of larval settlement of the polychaete Hydroides elegans Appl Environ Microbiol 73:6284–6288

    Article  CAS  Google Scholar 

  • Hung OS, Gosselin LA, Thiyagarajan V, Wu RSS, Qian PY (2005a) Do effects of ultraviolet radiation on microbial films have indirect effects on larval attachment of the barnacle Balanus amphitrite? J Exp Mar Biol Ecol 323:16–26

    Article  Google Scholar 

  • Hung OS, Thiyagarajan V, Wu RSS, Qian PY (2005b) Effect of ultraviolet radiation on biofilms and subsequent larval settlement of Hydroides elegans Mar Ecol Prog Ser 304:155–166

    Article  Google Scholar 

  • Hung OS, Thiyagarajan V, Zhang R, Wu RSS, Qian PY (2007) Attachment of Balanus amphitrite larvae to biofilms originated from contrasting environments. Mar Ecol Prog Ser 333:229–242

    Article  CAS  Google Scholar 

  • Jin T, Qian PY (2004) Effect of mono-amino acids on larval metamorphosis of the polychaete Hydroides elegans Mar Ecol Prog Ser 267:223–232

    Article  Google Scholar 

  • Jin T, Qian PY (2005) Amino acid exposure modulates the bioactivity of biofilms for larval settlement of Hydroides elegans by altering bacterial community components. Mar Ecol Prog Ser 297:169–179

    Article  CAS  Google Scholar 

  • Keough MJ, Raimondi PT (1996) Responses of settling invertebrate larvae to bioorganic films: effects of large-scale variation in films. J Exp Mar Biol Ecol 207:59–78

    Article  Google Scholar 

  • Kierek-Pearson K, Karatan E (2005) Biofilm development in bacteria. Adv Appl Microbiol 57:79–111

    Article  PubMed  CAS  Google Scholar 

  • Kirchman D, Graham D, Reish D, Mitchell R (1982) Lectins may mediate in the settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae). Mar Biol Lett 3:201–222

    Google Scholar 

  • Kjelleberg S, Albertson N, Flardh K, Holmquist L, Jouper-Jaan A, Marouga R, Ostling J, Svenblad B, Weichart D (1993) How do non-differentiating bacteria adapt to starvation? Antonie Leeuwenhoek 63:333–341

    Article  PubMed  CAS  Google Scholar 

  • Lam C, Harder T, Qian PY (2005a) Induction of larval settlement in the polychaete Hydroides elegans by extracellular polymers of benthic diatoms. Mar Ecol Prog Ser 286:145–154

    Article  CAS  Google Scholar 

  • Lam C, Harder T, Qian PY (2005b) Growth conditions of benthic diatoms affect quality and quantity of extracellular polymeric larval settlement cues. Mar Ecol Prog Ser 294:109–116

    Article  Google Scholar 

  • Lau SCK, Mak KKW, Chen F, Qian PY (2002) Bioactivity of bacterial strains from marine bio-films in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans Mar Ecol Prog Ser 226:301–310

    Article  Google Scholar 

  • Lau SCK, Harder T, Qian PY (2003a) Induction of larval settlement in the serpulid polychaete Hydroides elegans (Haswell): role of bacterial extracellular polymers. Biofouling 19:197–204

    Article  CAS  Google Scholar 

  • Lau SCK, Thiyagarajan V, Qian PY (2003b) The bioactivity of bacterial isolates in Hong Kong waters for the inhibition of barnacle ( Balanus amphitrite Darwin) settlement. J Exp Mar Biol Ecol 282:43–60

    Article  Google Scholar 

  • Lau SCK, Thiyagarajan V, Cheung SCK, Qian PY (2005) Roles of bacterial community composition in biofilms as a mediator for larval settlement of three marine invertebrates. Aquat Microb Ecol 38:41–51

    Article  Google Scholar 

  • Li X, Dobretsov S, Xu Y, Xiao X, Qian PY (2006) Antifouling diketopiperazines produced by a deep-sea bacterium Streptomyces fungicidicus Biofouling 22:201–208

    Article  PubMed  CAS  Google Scholar 

  • Maki JS, Rittschof D, Costlow JD, Mitchell R (1988) Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar Biol 97:199–206

    Article  Google Scholar 

  • Maki JS (1999) The influence of marine microbes on biofouling. In: Fingerman M, Nagabhushanam R Thompson F (eds.) Recent advances in marine biotechnology, vol 3. Biofilms, bioadhesion, corrosion, and biofouling. Science, Enfield, NH, pp. 147–171

    Google Scholar 

  • Miao L, Kwong TFN, Qian PY (2006) Effect of culture conditions on the mycelial growth, antibacterial activity and metabolite profiles of the marine-derived fungus Arthrinium cf saccharicola. Appl Microbiol Biotechnol 72:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Minchinton TE, Scheibling RE (1993) Variations in sampling procedure and frequency affect estimates of recruitment of barnacle. Mar Ecol Prog Ser 99:83–88

    Article  Google Scholar 

  • Neal AL, Yule AB (1994) The tenacity of Elminius modestus and Balanus perforatus cyprids to bacterial films grown under different shear regimes. J Mar Biol Assoc UK74:251–257

    Google Scholar 

  • Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from dessication. Appl Environ Microbiol 60:740–745

    PubMed  CAS  Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247

    Article  PubMed  Google Scholar 

  • Palmer RJ, White DC (1997) Developmental biology of biofilms: implications for treatment and control. Trends Microbiol 5:435–439

    Article  PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  PubMed  CAS  Google Scholar 

  • Parsek MR, Val DL, Hanzelka BL, Cronan JEJr, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci U S A 96(8):4360–4365

    Article  PubMed  CAS  Google Scholar 

  • Patel P, Callow ME, Joint I, Callow JA (2003) Specificity in larval settlement modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha Environ Microb 5:338–349

    Article  CAS  Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol Ann Rev 30:273–335

    Google Scholar 

  • Qian PY (1999) Larval settlement of polychaetes. Hydrobiologia 402:239–253

    Article  CAS  Google Scholar 

  • Qian PY, Rittschoff D, Sreedhar B, Chia FS (1999) Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the effects of hydrodynamics on invertebrate larval settlement. Mar Ecol Prog Ser 191:141–151

    Article  Google Scholar 

  • Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from dessication. Appl Environ Microbiol 60:740–745

    PubMed  CAS  Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247

    Article  PubMed  Google Scholar 

  • Palmer RJ, White DC (1997) Developmental biology of biofilms: implications for treatment and control. Trends Microbiol 5:435–439

    Article  PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  PubMed  CAS  Google Scholar 

  • Parsek MR, Val DL, Hanzelka BL, Cronan JEJr, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci U S A 96(8):4360–4365

    Article  PubMed  CAS  Google Scholar 

  • Patel P, Callow ME, Joint I, Callow JA (2003) Specificity in larval settlement modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha Environ Microb 5:338–349

    Article  CAS  Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol Ann Rev 30:273–335

    Google Scholar 

  • Qian PY (1999) Larval settlement of polychaetes. Hydrobiologia 402:239–253

    Article  CAS  Google Scholar 

  • Qian PY, Rittschoff D, Sreedhar B, Chia FS (1999) Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the effects of hydrodynamics on invertebrate larval settlement. Mar Ecol Prog Ser 191:141–151

    Article  Google Scholar 

  • Qian PY, Rittschof D, Sreedhar B (2000) Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the interaction of flow and surface characteristics on the attachment of barnacle, bryozoan and polychaete larvae. Mar Ecol Prog Ser 207:109–121

    Article  Google Scholar 

  • Qian PY, Thiyagarajan V, Lau SCK, Cheung S (2003) Relationship between community and the attachment of acorn barnacle Balanus amphitrite Darwin. Aquat Microbiol Ecol 33:225–237

    Article  Google Scholar 

  • Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T (2007) Marine biofilms as mediators of colonization by marine macroorganisms implications for antifouling and aquaculture. Mar Biotech 9:399–410

    Article  CAS  Google Scholar 

  • Raimondi PT, Keough MJ (1990) Behavioural variability in marine larvae. Aust J Ecol 15:427–437

    Article  Google Scholar 

  • Rodriguez SR, Ojeda FP, Inestrosa NC (1993) Settlement of benthic marine invertebrates. Mar Ecol Prog Ser 97:193–207

    Article  Google Scholar 

  • Schneider RP, Marshall KC (1994) Retention of the Gram negative marine bacterium SW8 on surfaces — effects of microbial physiology, substratum nature and conditioning films. Colloids Surf B: Biointerfaces 2:387–396

    Article  CAS  Google Scholar 

  • Stevenson RJ, Peterson CG (1989) Variation in benthic diatom (Bacillariophyceae) immigration with habitat characteristics and cell morphology. J Phycol 25:120–129

    Article  Google Scholar 

  • Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113

    Article  PubMed  CAS  Google Scholar 

  • Szewzyk U, Holmstroem C, Wrangstadh M, Samuelsson MO, Maki JS, Kjelleberg S (1991) Relevance of the exopolysaccharide of marine Pseudomonas sp. strain S9 for the attachment of Ciona intestinalis larvae. Mar Ecol Prog Ser 75:259–265

    Google Scholar 

  • Thiyagarajan V, Hung OS, Chiu JMY, Wu RSS, Qian PY (2005) Growth and survival of juvenile barnacle Balanus amphitrite : interactive effects of cyprid energy reserve and habitat. Mar Ecol Prog Ser 299:229–237

    Article  Google Scholar 

  • Todd CD, Keough MJ (1994) Larval settlement in hard substratum epifaunal assemblages: a manipulative field study of the effects of substratum filming and the presence of incumbents. J Exp Mar Biol Ecol 181:159–187

    Article  Google Scholar 

  • Underwood AJ, Fairweather PG (1989) Supply side ecology and benthic marine ecology. Trends Ecol Evol 4:16–20

    Article  Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189

    Article  Google Scholar 

  • Wieczorek SK, Todd CD (1998) Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12:81–118

    Google Scholar 

  • Wieczorek SK, Murray AWA, Todd CD (1996) Seasonal variation in the effects of hard substratum biofilming on settlement of marine invertebrate larvae. Biofouling 10:309–330

    Article  Google Scholar 

  • Wimpenny J (2000) An overview of biofilms as functional communities. In: Allison D, Gibert P Lappin-Scott H, Wilson M (eds.) Community structure and co-operation in biofilms. Cambridge University Press, Cambridge, UK, pp. 1–24

    Google Scholar 

  • Wolfstein K, Stal LJ (2002) Production of extracellular polymeric substances (EPS) by benthic diatoms: effect of irradiance and temperature. Mar Ecol Prog Ser 236:13–22

    Article  Google Scholar 

  • Wright JP, Gurney WSC, Jones CG (2004) Patch dynamics in a landscape modified by ecosystem engineers. Oikos 105:336–348

    Article  Google Scholar 

  • Xu Y, Miao L, Li XC, Xiao X, Qian PY (2007) Antibacterial and antilarval activity of deep-sea bacteria from sediments of the West Pacific Ocean. Biofouling 23:131–137

    Article  PubMed  Google Scholar 

  • Yang LH, Li XC, Yan SC, Sun HZ, Qian PY (2006) Antifouling properties of 10 b -formamidodalihinol-A and kalihinol A isolated from the marine sponge Acanthella cavernosa Biofouling 22:23–32

    Article  CAS  Google Scholar 

  • Yang LH, Xiong HR, Lee OO, Qi SH, Qian PY (2007) Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett Appl Microbiol 44:625–630

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Y. Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qian, P.Y., Dahms, HU. (2009). A Triangle Model: Environmental Changes Affect Biofilms that Affect Larval Settlement. In: Flemming, HC., Murthy, P.S., Venkatesan, R., Cooksey, K. (eds) Marine and Industrial Biofouling. Springer Series on Biofilms, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69796-1_16

Download citation

Publish with us

Policies and ethics