Skip to main content

Conceptual Issues in Quantum Cosmology

  • Conference paper
  • First Online:
Towards Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 541))

Abstract

I give a review of the conceptual issues that arise in theories of quantum cosmology. I start by emphasising some features of ordinary quantum theory that also play a crucial role in understanding quantum cosmology. I then give motivations why spacetime cannot be treated classically at the most fundamental level. Two important issues in quantum cosmology - the problem of time and the role of boundary conditions - are discussed at some length. Finally, I discuss how classical spacetime can be recovered as an approximate notion. This involves the application of a semiclassical approximation and the process of decoherence. The latter is applied to both global degrees of freedom and primordial fluctuations in an inflationary Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al'tshuler, B.L., Barvinsky, A.O. (1996): Quantum cosmology and physics of transitions with a change of the spacetime signature. Physics-Uspekhi 39, 429–459

    Article  ADS  Google Scholar 

  2. Ashtekar, A. (1999): Quantum mechanics of geometry. Electronic report grqc/9901023

    Google Scholar 

  3. Barbour, J.B. (1997): Nows are all we need. In: Time, Temporality, Now, edited by H. Atmanspacher and E. Ruhnau (Springer, Berlin)

    Google Scholar 

  4. Barvinsky, A.O., Kamenshchik, A.Yu. (1994): Quantum scale of inflation and particle physics of the early Universe. Phys. Lett. B 332, 270–276

    Article  ADS  Google Scholar 

  5. Barvinsky, A.O., Kamenshchik, A.Yu., Kiefer, C. (1999a): Effective action and decoherence by fermions in quantum cosmology. Nucl. Phys. B 552, 420–444

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Barvinsky, A.O., Kamenshchik, A.Yu., Kiefer, C. (1999b): Origin of the inflationary Universe. Mod. Phys. Lett. A 14, 1083–1088

    Article  ADS  Google Scholar 

  7. Barvinsky, A.O., Kamenshchik, A.Yu., Kiefer, C., Mishakov, I.V. (1999c): Decoherence in quantum cosmology at the onset of inflation. Nucl. Phys. B 551, 374–396

    Article  ADS  Google Scholar 

  8. Barvinsky, A.O., Kiefer, C. (1998): Wheeler-DeWitt equation and Feynman diagrams. Nucl. Phys. B 526, 509–539

    Article  MATH  ADS  Google Scholar 

  9. Blanchard, P., Giulini, D., Joos, E., Kiefer, C., Stamatescu, I.-O., eds. (1999): Decoherence: Theoretical, experimental and conceptual problems (Springer, Berlin)

    Google Scholar 

  10. Bousso, R., Hawking, S.W. (1996): Pair creation of black holes during inflation. Phys. Rev. D 54, 6312–6322

    Article  ADS  MathSciNet  Google Scholar 

  11. Briggs, J.S., Rost, J.M. (1999): Time dependence in quantum mechanics. Electronic report quant-ph/9902035

    Google Scholar 

  12. Brout, R., Parentani, R. (1999): Time in cosmology. Int. J. Mod. Phys. D 8, 1–22

    Article  MATH  ADS  Google Scholar 

  13. Calzetta, E., Hu, B.L. (1995): Quantum fluctuations, decoherence of the mean field, and structure formation in the early Universe. Phys. Rev. D 52, 6770–6788

    Article  ADS  Google Scholar 

  14. Coleman, S. (1988): Why there is nothing rather than something: A theory of the cosmological constant. Nucl. Phys. B 310, 643–668

    Article  ADS  Google Scholar 

  15. Conradi, H.D., Zeh, H.D. (1991): Quantum cosmology as an initial value problem. Phys. Lett. A 154, 321–326

    Article  ADS  Google Scholar 

  16. Dabrowski, M.P., Kiefer, C. (1997): Boundary conditions in quantum string cosmology. Phys. Lett. B 397, 185–192

    Article  ADS  MathSciNet  Google Scholar 

  17. Giulini, D. (1995): What is the geometry of superspace? Phys. Rev. D 51, 5630–5635

    Article  ADS  MathSciNet  Google Scholar 

  18. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D. (1996): Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin)

    MATH  Google Scholar 

  19. Giulini, D., Kiefer, C. (1994): Wheeler-DeWitt metric and the attractivity of gravity. Phy. Lett. A 193, 21–24

    Article  ADS  Google Scholar 

  20. Halliwell, J.J. (1991): Introductory lectures on quantum cosmology. In Quantum cosmology and baby universes, edited by S. Coleman, J.B. Hartle, T. Piran, and S. Weinberg (World Scientific, Singapore)

    Google Scholar 

  21. Haroche, S. (1998): Entanglement, decoherence and the quantum/classical boundary. Phys. Today 51 (July), 36–42

    Google Scholar 

  22. Hartle, J.B. (1997): Quantum cosmology: problems for the 21st century. In: Physics in the 21st century, edited by K. Kikkawa, H. Kunimoto, H. Ohtsubo (World Scientific, Singapore)

    Google Scholar 

  23. Hartle, J.B., Hawking, S.W. (1983): Wave function of the Universe. Phys. Rev. D 28, 2960–2975

    Article  ADS  MathSciNet  Google Scholar 

  24. Hawking, S.W., Turok, N.G. (1998): Open inflation without false vacua. Phys. Lett. B 425, 25–32

    Article  ADS  MathSciNet  Google Scholar 

  25. Isham, C.J. (1992): Canonical quantum gravity and the problem of time. In: Integrable Systems, Quantum Groups, and Quantum Field Theories, edited by L. A. Ibart and M. A. Rodrigues (Kluwer, Dordrecht)

    Google Scholar 

  26. Joos, E. (1986): Why do we observe a classical spacetime? Phys. Lett. A 116, 6–8

    Article  ADS  MathSciNet  Google Scholar 

  27. Joos, E., Zeh, H.D. (1985): The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223–243

    Article  ADS  Google Scholar 

  28. Kiefer, C. (1987): Continuous measurement of mini-superspace variables by higher multipoles. Class. Quantum Grav. 4, 1369–1382

    Article  ADS  MathSciNet  Google Scholar 

  29. Kiefer, C. (1990): Wave packets in quantum cosmology and the cosmological constant. Nucl. Phys. B 341, 273–293

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Kiefer, C. (1991): On the meaning of path integrals in quantum cosmology. Ann. Phys. (N.Y.) 207, 53–70

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Kiefer, C. (1992): Decoherence in quantum electrodynamics and quantum cosmology. Phys. Rev. D 46, 1658–1670

    Article  ADS  Google Scholar 

  32. Kiefer, C. (1993): Topology, decoherence, and semiclassical gravity. Phys. Rev. D 47, 5414–5421

    Article  ADS  MathSciNet  Google Scholar 

  33. Kiefer, C. (1994): The semiclassical approximation to quantum gravity. In: Canonical gravity: From Classical to Quantum, edited by J. Ehlers and H. Friedrich (Springer, Berlin)

    Google Scholar 

  34. Kiefer, C. (1997): Does time exist at the most fundamental level? In: Time, Temporality, Now, edited by H. Atmanspacher and E. Ruhnau (Springer, Berlin)

    Google Scholar 

  35. Kiefer, C. (1999): Decoherence in situations involving the gravitational field. In: Blanchard et al. (1999).

    Google Scholar 

  36. Kiefer, C., Joos, E. (1999): Decoherence: Concepts and examples. In: Quantum Future, edited by P. Blanchard and A. Jadczyk (Springer, Berlin)

    Google Scholar 

  37. Kiefer, C., Lesgourgues, J., Polarski, D., Starobinsky, A.A. (1998a): The coherence of primordial fluctuations produced during inflation. Class. Quantum Grav. 15, L67–L72

    Article  MATH  ADS  Google Scholar 

  38. Kiefer, C., Polarski, D. (1998): Emergence of classicality for primordial fluctuations: concepts and analogies. Ann. Phys. (Leipzig) 7, 137–158

    Article  MATH  Google Scholar 

  39. Kiefer, C., Polarski, D., Starobinsky, A.A. (1998b): Quantum-to-classical transition for fluctuations in the early universe. Int. J. Mod. Phys. D 7, 455–462

    Article  MATH  ADS  Google Scholar 

  40. Kiefer, C., Singh, T.P. (1991): Quantum gravitational corrections to the functional Schrödinger equation. Phys. Rev. D 44, 1067–1076

    Article  ADS  MathSciNet  Google Scholar 

  41. Kiefer, C., Zeh, H.D. (1995): Arrow of time in a recollapsing quantum universe. Phys. Rev. D 51, 4145–4153

    Article  ADS  MathSciNet  Google Scholar 

  42. Kuchař, K.V. (1992): Time and interpretations of quantum gravity. In: Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, edited by G. Kunstatter, D. Vincent and J. Williams (World Scientific, Singapore)

    Google Scholar 

  43. Lemaître, G. (1931): The beginning of the world from the point of view of quantum theory. Nature 127, 706

    Article  ADS  Google Scholar 

  44. Matacz, A. (1997): A new theory of stochastic inflation. Phys. Rev. D 55, 1860–1874

    Article  ADS  Google Scholar 

  45. Mott, N.F. (1931): On the theory of excitation by collision with heavy particles. Proc. Cambridge Phil. Soc. 27, 553–560

    MATH  Google Scholar 

  46. Rosales, J.-L. (1997): Quantum state correction of relic gravitons from quantum gravity. Phys. Rev. D 55, 4791–4794

    Article  ADS  MathSciNet  Google Scholar 

  47. Schrödinger, E. (1935): Discussion of probability relations between separated systems. Proc. Cambridge Phil. Soc. 31, 555–563

    MATH  Google Scholar 

  48. Sen, A. (1998): Developments in superstring theory. To be published in the Proceedings of the 29th International Conference on High-Energy Physics, Vancouver, Canada, 23–29 July 1998, Electronic report hep-ph/9810356

    Google Scholar 

  49. Teitelboim, C. (1980): The Hamiltonian structure of space-time. In: General relativity and gravitation, edited by A. Held (Plenum Press, New York)

    Google Scholar 

  50. Vilenkin, A. (1998): The quantum cosmology debate. Contribution to the conference on particle physics and the early universe (COSMO 98), Monterey, CA, 15.-20.11.1998, Electronic report gr-qc/9812027

    Google Scholar 

  51. Zeh, H.D. (1986): Emergence of classical time from a universal wave function. Phys. Lett. A 116, 9–12

    Article  ADS  MathSciNet  Google Scholar 

  52. Zeh, H.D. (1997): What is achieved by decoherence? In New Developments on Fundamental Problems in Quantum Physics, edited by M. Ferrer and A. van der Merwe (Kluwer Academic, Dordrecht)

    Google Scholar 

  53. Zeh, H.D. (1999): The physical basis of the direction of time (Springer, Berlin)

    MATH  Google Scholar 

  54. Zurek, W.H. (1991): Decoherence and the Transition from Quantum to Classical. Physics Today 44 (Oct.), 36–44; see also the discussion in Physics Today (letters) 46 (April), 13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiefer, C. (2000). Conceptual Issues in Quantum Cosmology. In: Kowalski-Glikman, J. (eds) Towards Quantum Gravity. Lecture Notes in Physics, vol 541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46634-7_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-46634-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66910-4

  • Online ISBN: 978-3-540-46634-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics