Skip to main content

Central Processing of Lateral Line Information

  • Chapter
  • First Online:
The Lateral Line System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 48))

Abstract

With the lateral line system, fish and aquatic amphibians detect minute water motions. The hydrodynamic information that is received by the lateral line sense organs, the neuromasts, is represented by the activity of afferent nerve fibers and is analyzed by the brain to determine identity and location of a source of hydrodynamic disturbance. This chapter presents our current knowledge on the processing of various hydrodynamic stimuli at different levels of the ascending lateral line pathway. Different stimuli have been used to study the function of central lateral line units, including dipole stimuli, moving objects, bulk water flow, and vortex streets. Compared to primary afferent nerve fibers, most central units are less sensitive to dipole stimuli and exhibit more complex spatial receptive fields and highly selective responses to moving objects. When exposed to bulk water flow, flow-sensitive central units may increase or decrease their ongoing discharge rate. As a consequence, their responses to dipole stimuli or moving objects may be masked. When stimulated with a vortex street, central units may represent the vortex shedding frequency in their activity. Anatomical studies have uncovered somatotopic representations of the lateral line periphery in various brain regions. Physiological data, however, that are indicative of a systematic representation of hydrodynamic information such as source location or bulk flow velocity in the form of a central map are scarce. More studies are needed to uncover the computational rules and the circuit diagrams implemented in the central lateral line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALLN:

anterior lateral line nerve

CN:

canal neuromast

CNS:

central nervous system

CON:

caudal octavolateralis nucleus

MON:

medial octavolateralis nucleus

PLLN:

posterior lateral line nerve

PSTH:

peristimulus time histogram

SN:

superficial neuromast

RF:

receptive field

TS:

torus semicircularis

References

  • Akshoomoff, N. A., & Courchesne, E. (1992). A new role for the cerebellum in cognitive operations. Behavioral Neuroscience, 106, 731–738.

    CAS  PubMed  Google Scholar 

  • Alexandre, D., & Ghysen, A. (1999). Somatotopy of the lateral line projection in larval zebrafish. Proceedings of the National Academy of Sciences of the USA, 96, 7558–7562.

    CAS  PubMed  Google Scholar 

  • Ali, R., Mogdans, J., & Bleckmann, H. (2010). Responses of medullary lateral line units of the goldfish, Carassius auratus, to amplitude-modulated sinusoidal wave stimuli. International Journal of Zoology, doi:10.1155/2010/762621.

    Google Scholar 

  • Alnaes, E. (1973). Unit activity of ganglionic and medullary second order neurones in the eel lateral line system. Acta Physiologica Scandinavia, 88, 160–174.

    CAS  Google Scholar 

  • Andrianov, G. N., & Ilynski, O. B. (1973). Some functional properties of central neurons connected with the lateral-line organs of the catfish (Ictalurus nebulosus). Journal of Comparative Physiology A, 86, 365–376.

    Google Scholar 

  • Bartels, M., Münz, H., & Claas, B. (1990). Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. Journal of Comparative Physiology A, 167, 347–356.

    Google Scholar 

  • Bastian, J. (1986). Gain control in the electrosensory system: A role for the descending projections to the electrosensory lateral line lobe. Journal of Comparative Physiology A, 158, 505–515.

    CAS  Google Scholar 

  • Behrend, O., Branoner, F., Zhivko, Z., & Ziehm, U. (2006). Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis. European Journal of Neuroscience, 23, 729–744.

    PubMed  Google Scholar 

  • Birkhofer, M., Bleckmann, H., & Görner, P. (1994). Sensory activity in the telencephalon of the clawed toad, Xenopus laevis. European Journal of Morphology, 32, 262–266.

    CAS  PubMed  Google Scholar 

  • Bleckmann, H. (1982). Reaction time, threshold values and localization of prey in stationary and swimming surface feeding fish Aplocheilus lineatus (Cyprinodontidae). Zoologisches Jahrbuch Abteilung Physiologie, 86, 71–81.

    Google Scholar 

  • Bleckmann, H., & Topp, G. (1981). Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwissenschaften, 68, 624–625.

    Google Scholar 

  • Bleckmann, H., & Bullock, T.H. (1989). Central nervous physiology of the lateral line system, with special reference to cartilaginous fishes. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 387–408). New York: Springer-Verlag.

    Google Scholar 

  • Bleckmann, H., & Münz, H. (1990). Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. Brain, Behavior and Evolution, 35, 240–250.

    CAS  PubMed  Google Scholar 

  • Bleckmann, H., & Zelick, R. (1993). The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. Journal of Comparative Physiology A, 172, 115–128.

    Google Scholar 

  • Bleckmann, H., Waldner, I., & Schwartz, E. (1981). Frequency discrimination of the surface-feeding fish Aplocheilus lineatus—a prerequisite for prey localization? Journal of Comparative Physiology A, 143, 485–490.

    Google Scholar 

  • Bleckmann, H., Bullock, T. H., & Jorgensen, J. M. (1987). The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). Journal of Comparative Physiology A, 161, 67–84.

    CAS  Google Scholar 

  • Bleckmann, H., Tittel, G., & Blübaum-Gronau, E. (1989a). The lateral line system of surface-feeding fish: Anatomy, physiology, and behavior. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 501–526). New York: Springer-Verlag.

    Google Scholar 

  • Bleckmann, H., Weiss, O., & Bullock, T. H. (1989b). Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. Journal of Comparative Physiology A, 164, 459–474.

    CAS  Google Scholar 

  • Bleckmann, H., Niemann, U., & Fritzsch, B. (1991a). Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus spec. Journal of Comparative Neurology, 314, 452–466.

    CAS  PubMed  Google Scholar 

  • Bleckmann, H., Breithaupt, T., Blickhan, R., & Tautz, J. (1991b). The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. Journal of Comparative Physiology A, 168, 749–757.

    CAS  Google Scholar 

  • Bleckmann, H., Przybilla, A., Klein, A., Schmitz, A., Kunze, S., & Brücker, C. (2012). Station holding in trout: Behavior, physiology and hydrodynamics. In T. Tropea & H. Bleckmann (Eds.), Nature-inspired fluid mechanics (pp. 161–177). New York: Springer.

    Google Scholar 

  • Blübaum-Gronau, E., & Münz, H. (1987). Topological representation of primary afferents in various segments of the lateral line system in the butterflyfish, Pantodon buchholzi Verhandlungen der Deutschen Zoologischen Gesellschaft (pp. 268–269). Stuttgart: Gustav Fischer.

    Google Scholar 

  • Braun, C. B., Coombs, S., & Fay, R. R. (2002). What is the nature of multisensory interaction between octavolateralis sub-systems? Brain, Behavior and Evolution, 59, 162–176.

    PubMed  Google Scholar 

  • Chagnaud, B. P., Bleckmann, H., & Engelmann, J. (2006). Neural responses of goldfish lateral line afferents to vortex motions. Journal of Experimental Biology, 209, 327–342.

    PubMed  Google Scholar 

  • Chagnaud, B. P., Bleckmann, H., & Hofmann, M. (2007a). Kármán vortex street detection by the lateral line. Journal of Comparative Physiology A, 193, 753–763.

    Google Scholar 

  • Chagnaud, B. P., Bleckmann, H., & Hofmann, M. H. (2007b). Lateral line nerve fibers do not respond to bulk water flow direction. Zoology, 111, 204–207.

    Google Scholar 

  • Claas, B., & Münz, H. (1981). Projection of lateral line afferents in a teleost brain. Neuroscience Letters, 23, 287–290.

    CAS  PubMed  Google Scholar 

  • Coombs, S., & Janssen, J. (1990). Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. Journal of Comparative Physiology A, 167, 557–567.

    CAS  Google Scholar 

  • Coombs, S., & Patton, P. (2009). Lateral line stimulation patterns and prey orieting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). Journal of Comparative Physiology A, 195, 279–297.

    Google Scholar 

  • Coombs, S., Fay, R. R., & Janssen, J. (1989). Hot-film anemometry for measuring lateral line stimuli. Journal of the Acoustical Society of America, 85, 2185–2193.

    CAS  PubMed  Google Scholar 

  • Coombs, S., Hastings, M., & Finneran, J. (1996). Modeling and measuring lateral line excitation patterns to changing dipole source locations. Journal of Comparative Physiology A, 178, 359–371.

    CAS  Google Scholar 

  • Coombs, S., Mogdans, J., Halstead, M., & Montgomery, J. (1998). Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. Journal of Comparative Physiology A, 182, 609–626.

    Google Scholar 

  • Coombs, S., Braun, C. B. , & Donovan, B. (2001). The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. Journal of Experimental Biology, 204, 337–348.

    CAS  PubMed  Google Scholar 

  • Ćurčić-Blake, B., & van Netten, S. M. (2006). Source localization encoding in the fish lateral line. Journal of Experimental Biology, 209, 1548–1559.

    PubMed  Google Scholar 

  • Denise, P., & Darlot, C. (1993). The cerebellum as a predictor of neural messages II. Role in motor control and motion sickness. Neuroscience, 56, 647–655.

    CAS  PubMed  Google Scholar 

  • Elepfandt, A. (1986). Wave frequency recognition and absolute pitch for water waves in the clawed frog, Xenopus laevis. Journal of Comparative Physiology A, 158, 235–238.

    Google Scholar 

  • Elepfandt, A., Seiler, B., & Aicher, B. (1985). Water wave frequency discrimination in the clawed frog, Xenopus laevis. Journal of Comparative Physiology A, 157, 255–261.

    Google Scholar 

  • Engelmann, J., & Bleckmann, H. (2004). Coding of lateral line stimuli in the goldfish midbrain in still- and running water. Zoology, 107, 135–151.

    PubMed  Google Scholar 

  • Engelmann, J., Hanke, W., Mogdans, J., & Bleckmann, H. (2000). Hydrodynamic stimuli and the fish lateral line. Nature, 408, 51–52.

    CAS  PubMed  Google Scholar 

  • Engelmann, J., Hanke, W., & Bleckmann, H. (2002a). Lateral line reception in still- and running water. Journal of Comparative Physiology A, 188(7), 513–526.

    CAS  Google Scholar 

  • Engelmann, J., Kröther, S., Mogdans, J., & Bleckmann, H. (2002b). Responses of primary and secondary lateral line units to dipole stimuli applied under still and running water conditions. Bioacoustics, 12, 158–160.

    Google Scholar 

  • Engelmann, J., Kröther, S., Bleckmann, H., & Mogdans, J. (2003). Effects of running water on lateral line responses to moving objects. Brain, Behavior and Evolution, 61, 195–212.

    PubMed  Google Scholar 

  • Fiebig, E. (1988). Connections of the corpus cerebelli in the thornback guitarfish, Platyrhinoidis triseriata (Elasmobranchii): A study with WGA-HRP and extracellular granule cell recording. Journal of Comparative Neurology, 268, 567–583.

    CAS  PubMed  Google Scholar 

  • Fritzsch, B. (1989). Diversity and regression in the amphibian lateral line and electrosensory system. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 99–114). New York: Springer-Verlag.

    Google Scholar 

  • Frühbeis, B. (1984). Verhaltensphysiologische Untersuchungen zur Frequenzunterscheidung und Empfindlichkeit durch das Seitenlinienorgan des blinden Höhlenfisches Anoptichthys jordani. Dissertation, Universität Mainz, 1–73.

    Google Scholar 

  • Gardiner, J. M., & Atema, J. (2007). Sharks need the lateral line to locate odor sources: Rheotaxis and eddy chemotaxis. Journal of Experimental Biology, 210, 1925–1934.

    PubMed  Google Scholar 

  • Gompel, N., Dembly-Chaudière, C., & Ghysen, A. (2001). Neuronal differences prefigure somatotopy in the zebrafish lateral line. Development, 128, 387–393.

    CAS  PubMed  Google Scholar 

  • Hanke, W., & Bleckmann, H. (1999). Flow visualization and particle image velocimetry with a custom made inexpensive device. In D. Zissler (Ed.), Verhandlungen der Deutschen Zoololgischen Gesellschaft. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Hanke, W., & Bleckmann, H. (2004). The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. Journal of Experimental Biology, 207, 1585–1596.

    PubMed  Google Scholar 

  • Hara, O. (1993). Role of olfactation in fish behavior. In T. J. Pitcher (Ed.), Behaviour of teleost fishes, (2nd ed., pp. 171–199). London, New York: Chapman and Hall.

    Google Scholar 

  • Ivry, R. B., & Baldo, J. V. (1992). Is the cerebellum involved in learning and cognition? Current Opinion in Neurobiology, 2, 212–216.

    CAS  PubMed  Google Scholar 

  • Kirsch, J. A., Hofman, M. A., Mogdans, J., & Bleckmann, H. (2002a). Responses of diencephalic neurons to sensory stimulation in the goldfish, Carassius auratus. Brain Research Bulletin, 57, 419–421.

    PubMed  Google Scholar 

  • Kirsch, J. A., Hofmann, M. H., Mogdans, J., & Bleckmann, H. (2002b). Response properties of diencephalic neurons to visual, acoustic and hydrodynamic stimulation in the goldfish, Carassius auratus. Zoology, 105, 61–70.

    PubMed  Google Scholar 

  • Knudsen, E. I. (1977). Distinct auditory and lateral line nuclei in the midbrain of catfishes. Journal of Comparative Neurology, 173, 417–432.

    CAS  PubMed  Google Scholar 

  • Koester, D. M. (1983). Central projections of the octavolateralis nerves of the clearnose skate, Raja eglanteria. Journal of Comparative Neurology, 221, 199–215.

    CAS  PubMed  Google Scholar 

  • Kotchabhakdi, N. (1976). Functional organization of the goldfish cerebellum: Information processing of input from peripheral sense organs. Journal of Comparative Physiology A, 112, 75–93.

    Google Scholar 

  • Kröther, S., Mogdans, J., & Bleckmann, H. (2002). Brainstem lateral line responses to sinusoidal wave stimuli in still- and running water. Journal of Experimental Biology, 205, 1471–1484.

    PubMed  Google Scholar 

  • Kröther, S., Bleckmann, H., & Mogdans, J. (2004). Effects of running water on brainstem latetral line responses in trout, Oncorhynchus mykiss, to sinusoidal wave stimuli. Journal of Comparative Physiology A, 190, 437–448.

    Google Scholar 

  • Künzel, S., Bleckmann, H., & Mogdans, J. (2011). Responses of brainstem lateral line units to different stimulus source locations and vibration directions. Journal of Comparative Physiology A, 197, 773–787.

    Google Scholar 

  • Lee, L. T., & Bullock, T. H. (1984). Sensory representation in the cerebellum of the catfish. Journal of Comparative Physiology A, 13, 157–169.

    CAS  Google Scholar 

  • Liao, J. C. (2007). A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1973–1993.

    Google Scholar 

  • McCormick, C. A. (1989). Central lateral line mechanosensory pathways in bony fish. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution. (pp. 341–364). New York: Springer-Verlag.

    Google Scholar 

  • McCormick, C. A., & Hernandez, D. V. (1996). Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain, Behavior and Evolution, 47, 113–138.

    CAS  PubMed  Google Scholar 

  • Meyer G. (2010) Spatial sensitivity of midbrain lateral line units of the goldfish, Carassius auratus. PhD thesis, University of Bonn

    Google Scholar 

  • Mogdans, J., & Bleckmann, H. (1998). Responses of the goldfish trunk lateral line to moving object. Journal of Comparative Physiology A, 182, 659–676.

    Google Scholar 

  • Mogdans, J., & Goenechea, L. (2000). Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli. Zoology, 102, 227–237.

    Google Scholar 

  • Mogdans, J., & Kröther, S. (2001). Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, Carassius auratus. Zoology, 104, 153–166.

    CAS  PubMed  Google Scholar 

  • Mogdans, J., Bleckmann, H., & Menger, N. (1997). Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain, Behavior and Evolution, 50, 261–283.

    CAS  PubMed  Google Scholar 

  • Montgomery, J. C., & Macdonald, J. A. (1987). Sensory tuning of lateral line receptors in Antarctic fish to the movements of planctonic prey. Science, 235, 195–196.

    CAS  PubMed  Google Scholar 

  • Montgomery, J. C., & Coombs, S. (1992). Physiological characterization of lateral line function in the Antarctic fish Trematomus bernacchii. Brain, Behavior and Evolution, 40, 209–216.

    CAS  PubMed  Google Scholar 

  • Montgomery, J. C., & Bodznick, D. (1994). An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neuroscience Letters, 174, 145–148.

    CAS  PubMed  Google Scholar 

  • Montgomery, J. C., & Coombs, S. (1998). Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator. Journal of Experimental Biology, 201, 91–102.

    Google Scholar 

  • Montgomery, J. C., Coombs, S., Conley, R. A., & Bodznick, D. (1995). Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: A comparative overview of anatomical and functional similarities. Auditory Neuroscience, 1, 207–231.

    Google Scholar 

  • Montgomery, J., Bodznick, D., & Halstead, M. (1996). Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scopeana papillosus. Journal of Experimental Biology, 199, 893–899.

    PubMed  Google Scholar 

  • Montgomery, J. C., Macdonald, F., Baker, C. F., & Carton, A. G. (2002). Hydrodynamic contributions to multimodal guidance of prey capture behavior in fish. Brain, Behavior and Evolution, 59, 190–198.

    PubMed  Google Scholar 

  • Müller, H. M. (1996). Indications for feature detection with the lateral line organ fish. Comparative Biochemestry and Physiology, 114, 257–263.

    Google Scholar 

  • Müller, H. M., & Bleckmann, H. (1993). The responses of central octavolateralis cells to moving sources. Journal of Comparative Physiology A, 179, 455–471.

    Google Scholar 

  • Münz, H. (1985). Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. Journal of Comparative Physiology A, 157, 555–568.

    Google Scholar 

  • Münz, H. (1989). Functional organization of the lateral line periphery. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 285–298). New York: Springer-Verlag.

    Google Scholar 

  • Nelson, M. E., & Paulin, M. G. (1995). Neural stimulations of adaptive reafference suppression in the elasmobranch electrosensory system. Journal of Comparative Physiology A, 177, 723–736.

    CAS  Google Scholar 

  • New, J. G. (2002). Multimodal integration in the feeding behaviors of predatory teleost fishes. Brain, Behavior and Evolution, 59, 177–189.

    PubMed  Google Scholar 

  • New, J. G., Coombs, S., McCormick, C. A., & Oshel, P. E. (1996). Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. Journal of Comparative Neurology, 366, 534–546.

    CAS  PubMed  Google Scholar 

  • New, J. G., Braun, C. B., & Walter, K. (2000). Central projections of nerve fibers innervating individual canal neuromast organs in the muskellunge, Esox masquinongy. Society of Neuroscience Abstracts, 26, 146.

    Google Scholar 

  • Plachta, D., Mogdans, J., & Bleckmann, H. (1999). Responses of midbrain lateral line units of the goldfish, Carassius auratus, to constant-amplitude and amplitude modulated water wave stimuli. Journal of Comparative Physiology A, 185, 405–417.

    Google Scholar 

  • Plachta, D., Hanke, W., & Bleckmann, H. (2003). A hydrodynamic topographic map and two hydrodynamic subsystems in a vertebrate brain. Journal of Experimental Biology, 206, 3479–3486.

    PubMed  Google Scholar 

  • Prechtl, J. C., von der Emde, G., Wolfart, J., Karamürsel, S., Akoev, G. N., Andrianov, Y. N., & Bullock, T. H. (1998). Sensory processing in the pallium of a mormyrid fish. Journal of Neuroscience, 18, 7381–7393.

    CAS  PubMed  Google Scholar 

  • Puzdrowski, R. L. (1989). Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain, Behavior and Evolution, 34, 110–131.

    CAS  PubMed  Google Scholar 

  • Puzdrowski, R. L., & Leonard, R. B. (1993). The octavolateral systems in the stingray, Dasyatis sabina. I. Primary projections of the octaval and lateral line nerves. Journal of Comparative Neurology, 332, 21–37.

    Google Scholar 

  • Roberts, B. L., & Russell, I. J. (1972). The activity of lateral-line efferent neurones in stationary and swimming dogfish. Journal of Experimental Biology, 57, 435–448.

    CAS  PubMed  Google Scholar 

  • Roberts, B. L., & Meredith, G. E. (1989). The efferent system. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 445–459). New York: Springer-Verlag.

    Google Scholar 

  • Sand, O. (1981). The lateral line and sound reception. In W. N. Tavolga, A. N. Popper, & R. R. Fay (Eds.), Hearing and sound communication in fishes (pp. 459–480). New York: Springer-Verlag.

    Google Scholar 

  • Schellart, N. A. M., & Kroese, A. B. A. (1989). Interrelationship of acousticolateral and visual systems in the teleost midbrain. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 421–443). New York: Springer-Verlag.

    Google Scholar 

  • Schellart, N. A. M., Prins, M., & Kroese, A. B. A. (1992). The pattern of trunk lateral line afferents and efferents in the rainbow trout (Salmo gairdneri). Brain, Behavior and Evolution, 39, 371–380.

    CAS  PubMed  Google Scholar 

  • Song, J., & Northcutt, R. G. (1991a). Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain, Behavior and Evolution, 37, 10–37.

    CAS  PubMed  Google Scholar 

  • Song, J., & Northcutt, R. G. (1991b). The primary projections of the lateral-line nerves of the Florida gar, Lepisosteus platyrhincus. Brain, Behavior and Evolution, 37, 38–63.

    CAS  PubMed  Google Scholar 

  • Tricas, T. C., & Highstein, S. M. (1990). Visually mediated inhibition of lateral line primary afferent activity by the octavolateralis efferent system during predation in the free-swimming toadfish, Opsanus tau. Experimental Brain Research, 83, 233–236.

    CAS  PubMed  Google Scholar 

  • Tricas, T. C., & Highstein, S. M. (1991). Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. Journal of Comparative Physiology A, 169, 25–37.

    CAS  Google Scholar 

  • Vogel, D., & Bleckmann, H. (1997). Surface wave discrimination in the topminnow Aplocheilus lineatus. Journal of Comparative Physiology A, 180, 671–681.

    Google Scholar 

  • Voges, K., & Bleckmann, H. (2011). Two-dimensional receptive fields of midbrain lateral line unitsin the goldfish, Carassius auratus. Journal of Comparative Physiology A, 197, 827–837.

    Google Scholar 

  • von der Emde, G., & Bleckmann, H. (1992). Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii. Journal of Comparative Physiology A, 171, 683–694.

    Google Scholar 

  • von der Emde, G., & Bleckmann, H. (1998). Finding food: Senses involved in foraging for insect larvae in the electric fish Gnathonemus petersii. Journal of Experimental Biology, 201, 969–980.

    PubMed  Google Scholar 

  • Wagner, T., & Schwartz, E. (1992). Efferent lateral-line neurons of teleosts and their projection to lateral-line segments. In N. Elsner & W. D. Richter (Eds.), Rhythmogenesis in neurons and networks. Proceedings of the 20th Göttingen neurobiology conference. Stuttgart: Georg Thieme Verlag.

    Google Scholar 

  • Weeg, M. S., & Bass, A. H. (2000). Central lateral line pathways in a vocalizing fish. Journal of Comparative Neurology, 418, 41–64.

    CAS  PubMed  Google Scholar 

  • Weeg, M. S., & Bass, A. (2002). Frequency response properties of lateral line superficial neuromasts in a vocal fish, with evidence for acoustic sensitivity. Journal of Neurophysiology, 88, 1252–1262.

    PubMed  Google Scholar 

  • Wojtenek, W., Mogdans, J., & Bleckmann, H. (1998). The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. Zoology, 101, 69–82.

    Google Scholar 

  • Wubbels, R. J., Kroese, A. B. A., & Schellart, N. A. M. (1993). Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 179, 77–92.

    Google Scholar 

  • Wullimann, M. F. (1998). The central nervous system. In D. H. Evans (Ed.), The physiology of fishes (2nd ed., pp. 245–282). New York: CRC Press.

    Google Scholar 

  • Zittlau, K. E., Claas, B., Münz, H., & Görner, P. (1985). Multisensory interaction in the torus semicircularis of the clawed toad Xenopus laevis. Neuroscience Letters, 60, 77–81.

    CAS  PubMed  Google Scholar 

  • Zittlau, K. E., Claas, B., & Münz, H. (1986). Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. Journal of Comparative Physiology A, 158, 469–477.

    Google Scholar 

  • Zottoli, S. J., & Horne, C. van. (1983). Posterior lateral line afferent and efferent pathways within the central nervous system of the goldfish with special reference to the Mauthner cell. Journal of Comparative Neurology, 219, 100–111.

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to Sheryl Coombs and John Montgomery for carefully reading and commenting on the manuscript. They thank Vera Schlüssel and Sheryl Combs for stylistic help. The original research of the authors was generously supported by the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung, Defense Advances Research Project Agency, the Bundeanstalt für Gewässerkunde, Deutscher Akademischer Austauschdienst, and the Europäische Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Bleckmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bleckmann, H., Mogdans, J. (2013). Central Processing of Lateral Line Information. In: Coombs, S., Bleckmann, H., Fay, R., Popper, A. (eds) The Lateral Line System. Springer Handbook of Auditory Research, vol 48. Springer, New York, NY. https://doi.org/10.1007/2506_2013_16

Download citation

Publish with us

Policies and ethics