Skip to main content

Spin Selective Electron Transmission Through Monolayers of Chiral Molecules

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 298))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The synthesis was performed by the group of Prof. M. Fridkin, Department of Organic Chemistry, Weizmann Institute.

  2. 2.

    The helicity is defined for particles with momentum p and spin s as the expectation value of \( \frac{{s \cdot p}}{{\left| {s \cdot p} \right|}} \).

  3. 3.

    For a gold foil of area A=20 mm2 and number of molecules per cm2 \( N = 1.1 \times {10^{13}}\; \)adsorbed on both sides of the foil, and with a magnetic moment of \( 4 \times {10^{ - 6}}{\text{emu}} \) at 1 T, the magnetic moment per molecule is

    \( = \frac{{4 \times {{10}^{ - 6}} {\text{emu}}}}{{2 \times (1.1 \times {{10}^{13}})(0.2)\,\,{\text{molecules}}}} \) \( = 9.09 \times {10^{ - 19}}{\text{emu}}/{\text{molecules}} \) \( = 98\,{\mu_B}/{\text{molecule}} \).

  4. 4.

    The density of the molecules in the monolayer (n=1.4×1013 molecules/cm2) is equivalent to concentration of 7.3×10−2 mol/L. For DNA composed from 15 bases the molar extinction coefficient at λ=260 nm, where the DNA has maximum absorption, is \( \varepsilon = {122}{.2} \times {1}{{0}^3} \) \( {{\text{L}} \left/ {{{\text{mol}}\;{\text{cm}}}} \right.} \) and for a path length \( \ell \)=Monolayer thickness=3.2 nm, the absorbance \( A = - \log {{{(I}} \left/ {{{I_0})}} \right.} = \varepsilon \ell c = {28405}{.1} \times {1}{{0}^{ - {7}}} \) therefore the amount of light absorbed \( \frac{{{I_0} - I}}{{{I_0}}} \le 1\% \).

References

  1. Mason SF (1984) Nature 311:19

    Article  CAS  Google Scholar 

  2. Kelvin L (1904) Baltimore lectures. Clay, London

    Google Scholar 

  3. Barron L (1994) Science 266:1491

    Article  CAS  Google Scholar 

  4. Kleindienst P, Wagniere G (1998) Chem Phys Lett 288:89

    Article  CAS  Google Scholar 

  5. Rikken GLJA, Raupach E (2000) Nature 405:932

    Article  CAS  Google Scholar 

  6. Rikken GLJA, Raupach E (1997) Nature 390:493

    Article  CAS  Google Scholar 

  7. Wen X, Wilczek F, Zee A (1989) Phys Rev B 39:11413

    Article  Google Scholar 

  8. Landau LD, Lifshitz EM (1963) Electrodynamics of continuous media, 2nd edn. Pergamon, Oxford

    Google Scholar 

  9. O'Dell TH (1970) The electrodynamics of magneto-electric media. North Holland, Amsterdam

    Google Scholar 

  10. Lovesey SW, Staub U (2009) J Phys Condens Matter 21:142201 and references cited therein

    Google Scholar 

  11. Wagnière GH (2007) On chirality and the universal asymmetry. Wiley-VCH, Zürich

    Book  Google Scholar 

  12. Barron L (2004) Molecular light scattering and optical activity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. Pinheiro FA, van Tiggelen BA (2002) Phys Rev E 66:016607

    Article  CAS  Google Scholar 

  14. Pinheiro FA, van Tiggelen BA (2003) J Opt Soc Am A Opt Image Sci Vis 20:99

    Article  Google Scholar 

  15. Train C, Gheorghe R, Krstic V, Chamoreau LM, Ovanesyan NS, Rikken GLJA, Gruselle M, Verdaguer M (2008) Nat Mater 7:729

    Article  CAS  Google Scholar 

  16. Campbell DM, Farago PS (1987) J Phys B At Mol Phys 20:5133

    Article  CAS  Google Scholar 

  17. Nolting C, Mayer S, Kessler J (1997) J Phys B 30:5491

    Article  CAS  Google Scholar 

  18. Ray K, Ananthavel SP, Waldeck DH, Naaman R (1999) Science 283:814

    Article  CAS  Google Scholar 

  19. Carmeli I, Gefen Z, Vager Z, Naaman R (2003) Phys Rev B 68:115418

    Article  Google Scholar 

  20. Ray SG, Daube SS, Leitus G, Vager Z, Naaman R (2006) Phys Rev Lett 96:036101

    Article  CAS  Google Scholar 

  21. Skourtis SS, Beratan DN, Naaman R, Nitzan A, Waldeck DH (2008) Phys Rev Lett 101:238103

    Article  Google Scholar 

  22. Yeganeh S, Ratner MA, Medina E, Mujica V (2009) J Chem Phys 131:014707

    Article  Google Scholar 

  23. Lvov VS, Naaman R, Vager Z, Tiberkevich V (2003) Chem Phys Lett 381:650

    Article  CAS  Google Scholar 

  24. Ito E, Washizu Y, Hayashi N, Ishii H, Matsuie N, Tsuboi K, Ouchi Y, Harima Y, Yamashita K, Seki K (2002) J App Phys 92:7306

    Article  CAS  Google Scholar 

  25. Brinkman A, Huijben M, van Zalk J, Huijben M, Zeitler U, Maan JC, van der Wiel WG, Rijnders G, Blank DHA, Hilgenkamp H (2007) Nat Mater 6:493

    Article  CAS  Google Scholar 

  26. Carmeli I, Leitus G, Naaman R, Reich S, Vager Z (2003) J Chem Phys 118:10372

    Article  CAS  Google Scholar 

  27. Crespo P, Litrán R, Rojas TC, Multigner M, de la Fuente JM, Sánchez-López JC, García MA, Hernando A, Penadés S, Fernández A (2004) Phys Rev Lett 93:087204

    Article  CAS  Google Scholar 

  28. Carmeli I, Skakalova V, Naaman R, Vager Z (2002) Angew Chem Int Ed 41:761

    Article  CAS  Google Scholar 

  29. Suda M, Kameyama N, Suzuki M, Kawamura N, Einaga Y (2007) Angew Chem Int Ed 46:1

    Article  Google Scholar 

  30. Cahen D, Naaman R, Vager Z (2005) Adv Funct Mater 15:1571

    Article  CAS  Google Scholar 

  31. Ohtomo A, Hwang HY (2004) Nature 427:423

    Article  CAS  Google Scholar 

  32. Huijben M, Rijnders G, Blank DHA, Bals S, Aert SV, Verbeeck J, Tendeloo GV, Brinkman A, Hilgenkamp H (2006) Nat Mater 5:556

    Article  CAS  Google Scholar 

  33. Thiel S, Hammerl G, Schmehl A, Schneider CW, Mannhart J (2006) Science 313:1942

    Article  CAS  Google Scholar 

  34. Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammer G, Richter C, Schneider CW, Kopp T, Rüetschid A-S, Jaccard D et al (2007) Science 317:1196

    Article  CAS  Google Scholar 

  35. Herranz G, Basletić M, Bibes M, Carrétéro C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzić A, Broto J-M et al (2007) Phys Rev Lett 98:216803

    Article  CAS  Google Scholar 

  36. Basletic M, Maurice J-L, Carrétéro C, Herranz G, Copie O, Bibes M, Jacquet E, Bouzehouane K, Fusil S, Barthélémy A (2008) Nat Mater 7:621

    Article  CAS  Google Scholar 

  37. Siemons W, Koster G, Yamamoto H, Harrison WA, Lucovsky G, Geballe TH, Blank DHA, Beasley MR (2007) Phys Rev Lett 98:196802

    Article  Google Scholar 

  38. Willmott PR, Pauli SA, Herger R, Schlepütz CM, Martoccia D, Patterson BD, Delley B, Clarke R, Kumah D, Cionca C et al (2007) Phys Rev Lett 99:155502

    Article  CAS  Google Scholar 

  39. Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D (2007) Phys Rev B 75:121404(R)

    Article  Google Scholar 

  40. Pentcheva R, Pickett WE (2006) Phys Rev B 74:035112

    Article  Google Scholar 

  41. Park MS, Rhim SH, Freeman AJ (2006) Phys Rev B 74:205416

    Article  Google Scholar 

  42. Vager Z, Naaman R (2002) Chem Phys 281:305

    Article  CAS  Google Scholar 

  43. Fasman GD (1967) Poly-α-amino acids. Marcel Dekkar, Inc, New York

    Google Scholar 

  44. Parrish JR, Blout ER (1972) Biopolymers 11:1001

    Article  CAS  Google Scholar 

  45. Any H, Cheny B, Houy J, Shenz J, Liuy S (1998) J Phys D Appl Phys 31:1144 and references cited therein

    Google Scholar 

  46. Aqua T, Naaman R, Daube SS (2003) Langmuir 19:10573

    Article  CAS  Google Scholar 

  47. Petrovykh DY, Kimura-Suda H, Whitman LJ et al (2003) J Am Chem Soc 125:5219

    Article  CAS  Google Scholar 

  48. Borstel G, Wohlecke M (1982) Phys Rev B 28:1148

    Article  Google Scholar 

  49. Kirschner J (1985) Polarized electrons at surfaces. Springer, Berlin

    Google Scholar 

  50. Meier F, Pescia D (1981) Phys Rev Lett 47:374

    Article  CAS  Google Scholar 

  51. Meier F, Bona GL, Hufner S (1984) Phys Rev Lett 52:1152

    Article  CAS  Google Scholar 

  52. Naaman R, Vager Z (2003) Acc Chem Res 36:291

    Article  CAS  Google Scholar 

  53. Hush NS, Cheung AS (1975) Chem Phys Lett 34:11

    Article  CAS  Google Scholar 

  54. Kronik L, Shapira Y (1999) Surf Sci Rep 37:1

    Article  CAS  Google Scholar 

  55. Carmeli I (2003) PhD Thesis, Weizmann Institute of Science, Israel

    Google Scholar 

  56. Venkatesan M, Fitzgerald CB, Coey MD (2004) Nature 430:630

    Article  CAS  Google Scholar 

  57. Fasman GD (1975) The handbook of biochemistry and molecular biology, vol 1. CRC Press, Cleveland, OH, p 589

    Google Scholar 

  58. Ausubel FM et al. (Eds.) (1990) Current Protocols in Molecular Biology, Vol. 1, Green/Wiley-Interscience, New York

    Google Scholar 

  59. Stamou D, Gourdon D, Liley M, Burnham NA, Kulik A, Vogel H, Duschl C (1997) Langmuir 13:2425

    Article  CAS  Google Scholar 

  60. Suo Z, Gao YF, Scoles G (2004) Trans ASME 71:24

    Article  CAS  Google Scholar 

  61. Lassailly Y et al (2004) Phys Rev B 50:13054

    Article  Google Scholar 

  62. Ando T (2000) J Phys Soc Jpn 69:1757

    Article  CAS  Google Scholar 

  63. Kuemmeth F, Ilani S, Ralph DC, McEuen PL (2008) Nature 452:448

    Article  CAS  Google Scholar 

  64. Qi X-L, Zhang S-C (2010) Phys Today 63:33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RN acknowledges the support of the Israel Science Foundation. This research is made possible by the historic generosity of the Harold Perlman family.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Naaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springrer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naaman, R., Vager, Z. (2010). Spin Selective Electron Transmission Through Monolayers of Chiral Molecules. In: Naaman, R., Beratan, D., Waldeck, D. (eds) Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures. Topics in Current Chemistry, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_91

Download citation

Publish with us

Policies and ethics