Skip to main content

Chirality in Liquid Crystal Elastomers

  • Chapter
Chirality in Liquid Crystals

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

13.4 Conclusion

The coupling between the properties of conventional polymer networks and the properties of chiral liquid crystalline phases results in interesting, new opto- and electromechanical effects of the chiral liquid crystalline elastomers, as demonstrated by theoretical considerations and experiments. Knowledge about these new materials is still in its infancy. But the properties analyzed so far for these elastomers indicate promising aspects for application and are the basis for the new syntheses of optimized chiral liquid crystal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.R. Brand and H. Finkelmann, in: Handbook of Liquid Crystals (edited by D. Demus, J. Goodby, G.W. Gray, H.-W. Spiess, and V. Vill), Vol. 3, pp. 279–302, Wiley-VCH, Weinheim, 1998.

    Google Scholar 

  2. S.M. Kelly, Liq. Cryst. 24(1), 71 (1998).

    Article  Google Scholar 

  3. F.J. Davis, J. Mater. Chem. 3(6), 551 (1993).

    Article  Google Scholar 

  4. R. Zentel, Adv. Mater. 101(10), 1437 (1989).

    Google Scholar 

  5. J.C. Dubois, P. Le Barny, M. Mauzac, and C. Noel, Acta Polymer 48, 47 (1997).

    Article  Google Scholar 

  6. W. Gleim and H. Finkelmann, Makromol. Chem. 188, 1489 (1987).

    Article  Google Scholar 

  7. J. Schätzle, W. Kaufhold, and H. Finkelmann, Makromol. Chem. 190, 3269 (1987).

    Article  Google Scholar 

  8. H. Brand, Makromol. Chem., Rapid Commun. 10, 441 (1989).

    Article  Google Scholar 

  9. E. Terentjev, Europhys. Lett. 23, 27 (1993).

    Article  ADS  Google Scholar 

  10. R.A. Pelcovits and R.B. Meyer, J. Phys. II France 5, 877 (1995).

    Article  Google Scholar 

  11. H. Finkelmann, H.-J. Kock, and G. Rehage, Makromol. Chem., Rapid Commun. 2, 317 (1981).

    Article  Google Scholar 

  12. R. Zentel, Liq. Cryst. 3(4), 531 (1988).

    Article  Google Scholar 

  13. R. Zentel, G. Reckert, S. Bualek, and H. Kapitza, Makromol. Chem. 190, 2869 (1989).

    Article  Google Scholar 

  14. W. Meier and H. Finkelmann, Mater. Res. Soc. Bull. 16(1), 29 (1991).

    Google Scholar 

  15. S.U. Vallerien, R. Zentel, F. Kremer, H. Kapitza, and E.W. Fischer, Makromol. Chem., Rapid Commun. 11, 593 (1990).

    Article  Google Scholar 

  16. C.-C. Chang, L.-C. Chien, and R.B. Meyer, Phys. Rev. E 55(1), 534 (1997).

    Article  ADS  Google Scholar 

  17. W. Meier and H. Finkelmann, Makromol. Chem., Rapid Commun. 11, 599 (1990).

    Article  Google Scholar 

  18. W. Meier and H. Finkelmann, Macromolecules 26, 1811 (1993).

    Article  ADS  Google Scholar 

  19. T. Eckert, PhD Theses, Freiburg, 1995.

    Google Scholar 

  20. R. Hayakawa and Y. Wada, Fortschr. Hochpolym.-Forsch. 11, 1 (1973).

    Google Scholar 

  21. R.B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, J. Phys. Lett. 36, L–69 (1975).

    Article  Google Scholar 

  22. G. Pelzl, in: Liquid Crystals (edited by H. Stegemeyer), Vol. 88, Steinkopff Darmstadt, Springer-Verlag, New York, 1994.

    Google Scholar 

  23. S. Chandrasekhar, in: Liquid Crystals, Vol. 378, 2nd ed., Cambridge University Press, Cambridge, 1992.

    Book  Google Scholar 

  24. R. Zentel, Liq. Cryst. 3(4), 531 (1988).

    Article  Google Scholar 

  25. M. Brehmer, R. Zentel, G. Wagenblast, and K. Siemensmeyer, Macromol. Chem. Phys. 195, 1891 (1994).

    Article  Google Scholar 

  26. K. Semmler and H. Finkelmann, Polym. Adv. Technol. 5, 231 (1994).

    Article  Google Scholar 

  27. K. Semmler and H. Finkelmann, Macromol. Chem. Phys. 196, 3197 (1995).

    Article  Google Scholar 

  28. M. Mauzac, H.-T. Nguyen, F.-G. Tournilhac, and S.-V. Yablonsky, Chem. Phys. Lett. 240, 461 (1995).

    Article  ADS  Google Scholar 

  29. E. Gebhard and R. Zentel, Macromol. Rapid Commun. 19, 341 (1998).

    Article  Google Scholar 

  30. K. Skarp, S. Utho, K. Myoijn, H. Moritake, M. Ozaki, B. Helgree, and K. Yoshino, Jpn. J. Appl. Phys. 34, 5433 (1995).

    Article  ADS  Google Scholar 

  31. M. Brehmer, A. Wiesemann, R. Zentel, K. Siemensmeyer, and G. Wagenblast, Polym. Preprints (Am. Chem. Soc, Div. Polm. Chem.) 34(2), 708 (1993).

    Google Scholar 

  32. R. Zentel and M. Brehmer, Adv. Mater. 6(7/8), 598 (1994).

    Article  Google Scholar 

  33. E. Gebhard and R. Zentel, submitted to Liquid Crystals.

    Google Scholar 

  34. S.V. Shilov, H. Skupin, F. Kremer, K. Skarp, P. Stein, and H. Finkelmann, SPIE 3318, 62(1998).

    Article  ADS  Google Scholar 

  35. I. Benné and H. Finkelmann, Macromol. Rapid Commun. 15, 295 (1994).

    Article  Google Scholar 

  36. I. Benné, K. Semmler, and H. Finkelmann, Macromolecules 28, 1854 (1995).

    Article  ADS  Google Scholar 

  37. E.M. Terentjev and M. Warner, J. Phys. II France 4, 11 (1994).

    Google Scholar 

  38. T. Eckert, H. Finkelmann, M. Keck, W. Lehmann, and F. Kremer, Macromol. Rapid Commun. 17, 767 (1996).

    Article  Google Scholar 

  39. W. Lehmann, P. Gattinger, M. Keck, F. Kremer, P. Stein, T. Eckert, and H. Finkelmann, Ferroelectrics 208–209, 373 (1998).

    Article  Google Scholar 

  40. F. Kremer, W. Lehmann, H. Skupin, L. Hartmann, P. Stein, and H. Finkelmann, Polym. Adv. Techn. 9, 672 (1998).

    Article  Google Scholar 

  41. P. Stein and H. Finkelmann, in preparation.

    Google Scholar 

  42. M. Brehmer, R. Zentel, F. Gießelmann, R. Germer, and P. Zugenmaier, Liq. Cryst. 21, 589 (1996).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Stein, P., Finkelmann, H. (2001). Chirality in Liquid Crystal Elastomers. In: Kitzerow, HS., Bahr, C. (eds) Chirality in Liquid Crystals. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/0-387-21642-1_13

Download citation

  • DOI: https://doi.org/10.1007/0-387-21642-1_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98679-1

  • Online ISBN: 978-0-387-21642-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics