Skip to main content

Advertisement

Log in

Emerging Roles of Long Non-coding RNAs in Uterine Leiomyoma Pathogenesis: a Review

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine leiomyoma (UL), as the most prevalent type of women’s health disorders, is a benign tumor that originates from the smooth muscle cell layer of the uterus. A great number of associated complications are observed including infertility, miscarriage, bleeding, pain, dysmenorrhea, menorrhagia, and dyspareunia. Although the etiology of UL is largely undefined, environmental and genetic factors are witnessed to engage in the UL development. As long non-coding RNAs (lncRNAs) are involved in various types of cellular functions, in recent years, a great deal of attention has been drawn to them and their possible roles in UL pathogenesis. Moreover, they have illustrated their potential to be promising candidates for UL treatment. In this review paper, firstly, an overview of UL pathogenesis is presented. Then, the regulation of lncRNAs in UL and their possible mechanisms in cancer development are reviewed. Eventually, therapeutic approaches targeting lncRNAs in various cancers and UL are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Marsh EE, Al-Hendy A, Kappus D, Galitsky A, Stewart EA, Kerolous MJ. Burden, prevalence, and treatment of uterine fibroids: a survey of US women. J Women's Health. 2018;27(11):1359–67.

    Article  Google Scholar 

  2. Stewart EA, Cookson CL, Gandolfo RA, Schulze-Rath R. Epidemiology of uterine fibroids: a systematic review. BJOG. 2017;124(10):1501–12. https://doi.org/10.1111/1471-0528.14640.

    Article  CAS  PubMed  Google Scholar 

  3. Akbari M, Yassaee F, Aminbeidokhti M, Abedin-Do A, Mirfakhraie R. LncRNA SRA1 may play a role in the uterine leiomyoma tumor growth regarding the MED12 mutation pattern. Int J Women's Health. 2019;11:495–500.

    Article  CAS  Google Scholar 

  4. Cao T, Jiang Y, Wang Z, Zhang N, Al-Hendy A, Mamillapalli R, et al. H19 lncRNA identified as a master regulator of genes that drive uterine leiomyomas. Oncogene. 2019;38(27):5356–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chuang T-D, Khorram O. Expression profiling of lncRNAs, miRNAs, and mRNAs and their differential expression in leiomyoma using next-generation RNA sequencing. Reprod Sci. 2018;25(2):246–55.

    Article  CAS  PubMed  Google Scholar 

  6. Chuang TD, Xie Y, Yan W, Khorram O. Next-generation sequencing reveals differentially expressed small noncoding RNAs in uterine leiomyoma. Fertil Steril. 2018;109(5):919–29. https://doi.org/10.1016/j.fertnstert.2018.01.034.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang E, Xue L, Li Z, Yi T. Lnc-AL445665. 1–4 may be involved in the development of multiple uterine leiomyoma through interacting with miR-146b-5p. BMC Cancer. 2019;19(1):709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khan AT, Shehmar M, Gupta JK. Uterine fibroids: current perspectives. Int J Women's Health. 2014;6:95–114. https://doi.org/10.2147/IJWH.S51083.

    Article  Google Scholar 

  9. Williams ARJF. Uterine fibroids–what’s new? vol. 6; 2017.

    Google Scholar 

  10. Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol. 1990;94(4):435–8. https://doi.org/10.1093/ajcp/94.4.435.

    Article  CAS  PubMed  Google Scholar 

  11. Dolmans MM, Donnez J, Fellah L. Uterine fibroid management: today and tomorrow. J Obstet Gynaecol Res. 2019;45(7):1222–9. https://doi.org/10.1111/jog.14002.

    Article  PubMed  Google Scholar 

  12. Commandeur AE, Styer AK, Teixeira JM. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth. Hum Reprod Update. 2015;21(5):593–615. https://doi.org/10.1093/humupd/dmv030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Linder D, Gartler SM. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science. 1965;150(3692):67–9.

    Article  CAS  PubMed  Google Scholar 

  14. Parker WH, Fu YS, Berek JS. Uterine sarcoma in patients operated on for presumed leiomyoma and rapidly growing leiomyoma. Obstet Gynecol. 1994;83(3):414–8.

    CAS  PubMed  Google Scholar 

  15. Thorne JT, Segal TR, Chang S, Jorge S, Segars JH, Leppert PC. Dynamic reciprocity between cells and their microenvironment in reproduction. 2015;92(1):25 1-10.

  16. Blake RE. Leiomyomata uteri: hormonal and molecular determinants of growth. J Natl Med Assoc. 2007;99(10):1170–84.

    PubMed  PubMed Central  Google Scholar 

  17. Stewart EA. Uterine fibroids. Lancet. 2001;357(9252):293–8. https://doi.org/10.1016/S0140-6736(00)03622-9.

    Article  CAS  PubMed  Google Scholar 

  18. Faerstein E, Szklo M, Rosenshein N. Risk factors for uterine leiomyoma: a practice-based case-control study. I. African-American heritage, reproductive history, body size, and smoking. Am J Epidemiol. 2001;153(1):1–10. https://doi.org/10.1093/aje/153.1.1.

    Article  CAS  PubMed  Google Scholar 

  19. Botía C, Camarasa S, Baixauli F, Sanchez AJ. Uterine fibroids: understanding their origins to better understand their future treatments. 2017;3(130):2.

  20. Holdsworth-Carson SJ, Zaitseva M, Vollenhoven BJ, Rogers PA. Clonality of smooth muscle and fibroblast cell populations isolated from human fibroid and myometrial tissues. Mol Hum Reprod. 2014;20(3):250–9. https://doi.org/10.1093/molehr/gat083.

    Article  CAS  PubMed  Google Scholar 

  21. Islam MS, Ciavattini A, Petraglia F, Castellucci M, Ciarmela P. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics. Hum Reprod Update. 2018;24(1):59–85.

    Article  CAS  PubMed  Google Scholar 

  22. Baranov VS, Osinovskaya NS, Yarmolinskaya MI. Pathogenomics of uterine fibroids development. Int J Mol Sci. 2019;20(24):6151.

    Article  CAS  PubMed Central  Google Scholar 

  23. Ali M, Esfandyari S, Al-Hendy A. Evolving role of microRNAs in uterine fibroid pathogenesis: filling the gap! Fertil Steril. 2020;113(6):1167–8.

    Article  PubMed  Google Scholar 

  24. Ciebiera M, Włodarczyk M, Zgliczyński S, Łoziński T, Walczak K, Czekierdowski A. The role of miRNA and related pathways in pathophysiology of uterine fibroids—from bench to bedside. Int J Mol Sci. 2020;21(8):3016.

    Article  CAS  PubMed Central  Google Scholar 

  25. Leppert PC, Jayes FL, Segars JH. The extracellular matrix contributes to mechanotransduction in uterine fibroids. Obstet Gynecol Int. 2014;2014:1–12.

    Article  Google Scholar 

  26. Ono M, Kajitani T, Uchida H, Arase T, Oda H, Uchida S, et al. CD34 and CD49f double-positive and lineage marker-negative cells isolated from human myometrium exhibit stem cell-like properties involved in pregnancy-induced uterine remodeling. Biol Reprod. 2015;93(2):37. https://doi.org/10.1095/biolreprod.114.127126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yin P, Ono M, Moravek MB, Coon JS, Navarro A, Monsivais D, et al. Human uterine leiomyoma stem/progenitor cells expressing CD34 and CD49b initiate tumors in vivo. J Clin Endocrinol Metabol. 2015;100(4):E601–E6.

    Article  CAS  Google Scholar 

  28. Bulun SE. Uterine fibroids. N Engl J Med. 2013;369(14):1344–55.

    Article  CAS  PubMed  Google Scholar 

  29. Ono M, Qiang W, Serna VA, Yin P, Navarro A, Monsivais D, et al. Role of stem cells in human uterine leiomyoma growth. 2012;7(5):e36935.

  30. Moravek MB, Bulun SE. Endocrinology of uterine fibroids: steroid hormones, stem cells, and genetic contribution. Gynecology. 2015;27(4):276.

    Google Scholar 

  31. Ono M, Yin P, Navarro A, Moravek MB, Coon JS, Druschitz SA, et al. Paracrine activation of WNT/β-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. 2013;110(42):17053–8.

  32. Välimäki N, Kuisma H, Pasanen A, Heikinheimo O, Sjöberg J, Bützow R, et al. Genetic predisposition to uterine leiomyoma is determined by loci for genitourinary development and genome stability. 2018;7:e37110.

  33. Rafnar T, Gunnarsson B, Stefansson OA, Sulem P, Ingason A, Frigge ML, et al. Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits. 2018;9(1):1–9.

  34. Yatsenko SA, Mittal P, Wood-Trageser MA, Jones MW, Surti U, Edwards RP, et al. Highly heterogeneous genomic landscape of uterine leiomyomas by whole exome sequencing and genome-wide arrays. 2017;107(2):457–466. e9.

  35. Mehine M, Kaasinen E, Makinen N, Katainen R, Kampjarvi K, Pitkanen E, et al. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;369(1):43–53. https://doi.org/10.1056/NEJMoa1302736.

    Article  CAS  PubMed  Google Scholar 

  36. Mehine M, Makinen N, Heinonen HR, Aaltonen LA, Vahteristo P. Genomics of uterine leiomyomas: insights from high-throughput sequencing. Fertil Steril. 2014;102(3):621–9. https://doi.org/10.1016/j.fertnstert.2014.06.050.

    Article  CAS  PubMed  Google Scholar 

  37. Hodge JC, Kim TM, Dreyfuss JM, Somasundaram P, Christacos NC, Rousselle M, et al. Expression profiling of uterine leiomyomata cytogenetic subgroups reveals distinct signatures in matched myometrium: transcriptional profiling of the t(12;14) and evidence in support of predisposing genetic heterogeneity. Hum Mol Genet. 2012;21(10):2312–29. https://doi.org/10.1093/hmg/dds051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gallagher CS, Morton CC, editors. Genetic association studies in uterine fibroids: risk alleles presage the path to personalized therapies. Seminars in Reproductive Medicine; 2016: Thieme Medical Publishers.

  39. Liegl-Atzwanger B, Heitzer E, Flicker K, Muller S, Ulz P, Saglam O, et al. Exploring chromosomal abnormalities and genetic changes in uterine smooth muscle tumors. Mod Pathol. 2016;29(10):1262–77. https://doi.org/10.1038/modpathol.2016.107.

    Article  CAS  PubMed  Google Scholar 

  40. Mäkinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. 2011;334(6053):252-5.

  41. McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One. 2012;7(3):e33251. https://doi.org/10.1371/journal.pone.0033251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Croce S, Chibon F. MED12 and uterine smooth muscle oncogenesis: state of the art and perspectives. Eur J Cancer. 2015;51(12):1603–10. https://doi.org/10.1016/j.ejca.2015.04.023.

    Article  CAS  PubMed  Google Scholar 

  43. Sadeghi S, Khorrami M, Amin-Beidokhti M, Abbasi M, Kamalian Z, Irani S, et al. The study of MED12 gene mutations in uterine leiomyomas from Iranian patients. Tumour Biol. 2016;37(2):1567–71. https://doi.org/10.1007/s13277-015-3943-8.

    Article  CAS  PubMed  Google Scholar 

  44. Je EM, Kim MR, Min KO, Yoo NJ, Lee SH. Mutational analysis of MED12 exon 2 in uterine leiomyoma and other common tumors. Int J Cancer. 2012;131(6):E1044–7. https://doi.org/10.1002/ijc.27610.

    Article  CAS  PubMed  Google Scholar 

  45. Volckmar AL, Leichsenring J, Flechtenmacher C, Pfarr N, Siebolts U, Kirchner M et al. Tubular, lactating, and ductal adenomas are devoid of MED12 Exon2 mutations, and ductal adenomas show recurrent mutations in GNAS and the PI3K–AKT pathway. 2017;56(1):11-7.

  46. Akbari M, Abedin Do A, Yassaee F, Mirfakhraie R. MED12 exon 1 mutational screening in Iranian patients with uterine leiomyoma. Rep Biochem Mol Biol. 2019;8(1):21–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kämpjärvi K, Park MJ, Mehine M, Kim NH, Clark AD, Bützow R et al. Mutations in exon 1 highlight the role of MED 12 in uterine leiomyomas. 2014;35(9):1136-41.

  48. Qu S, Yang X, Song W, Sun W, Li X, Wang J, et al. Downregulation of lncRNA-ATB correlates with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol. 2016;37(3):3933–8. https://doi.org/10.1007/s13277-015-4252-y.

    Article  CAS  PubMed  Google Scholar 

  49. Yang Q, Diamond MP, Al-Hendy A. Early life adverse environmental exposures increase the risk of uterine fibroid development: role of epigenetic regulation. Front Pharmacol. 2016;7:40. https://doi.org/10.3389/fphar.2016.00040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. 2012;22(9):1775-89.

  51. Bánfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE, et al. Long noncoding RNAs are rarely translated in two human cell lines. 2012;22(9):1646–57.

  52. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504. https://doi.org/10.1101/gad.1800909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220(2):126–39. https://doi.org/10.1002/path.2638.

    Article  CAS  PubMed  Google Scholar 

  54. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925–33. https://doi.org/10.4161/rna.24604.

    Article  CAS  PubMed  Google Scholar 

  55. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61. https://doi.org/10.1016/j.tcb.2011.04.001.

    Article  CAS  PubMed  Google Scholar 

  56. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–325. https://doi.org/10.1152/physrev.00041.2015.

    Article  CAS  PubMed  Google Scholar 

  57. Jiang C, Li X, Zhao H, Liu H. Long non-coding RNAs: potential new biomarkers for predicting tumor invasion and metastasis. Mol Cancer. 2016;15(1):62. https://doi.org/10.1186/s12943-016-0545-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li J, Tian H, Yang J, Gong Z. Long noncoding RNAs regulate cell growth, proliferation, and apoptosis. DNA Cell Biol. 2016;35(9):459–70. https://doi.org/10.1089/dna.2015.3187.

    Article  CAS  PubMed  Google Scholar 

  59. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152(6):1298–307. https://doi.org/10.1016/j.cell.2013.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol. 2012;48(3):R45–53. https://doi.org/10.1530/JME-12-0008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GPJSs. Noncoding RNA gas5 is a growth arrest–and starvation-associated repressor of the glucocorticoid receptor. 2010;3(107):ra8-ra.

  62. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. https://doi.org/10.1038/nature08975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. He A, He S, Li X, Zhou L. ZFAS 1: a novel vital oncogenic lnc RNA in multiple human cancers. 2019;52(1):e12513.

  64. Yang E, Xue L, Li Z, Yi T. Lnc-AL445665. 1–4 may be involved in the development of multiple uterine leiomyoma through interacting with miR-146b-5p. 2019;19(1):709.

  65. D’Angelo E, Agostini M. Long non-coding RNA and extracellular matrix: the hidden players in cancer-stroma cross-talk. Noncod RNA Res. 2018;3(4):174–7. https://doi.org/10.1016/j.ncrna.2018.08.002.

    Article  CAS  Google Scholar 

  66. Guo H, Zhang X, Dong R, Liu X, Li Y, Lu S, et al. Integrated analysis of long noncoding RNAs and mRNAs reveals their potential roles in the pathogenesis of uterine leiomyomas. 2014;5(18):8625.

  67. Aissani B, Zhang K, Mensenkamp AR, Menko FH, Wiener HW. Fine mapping of the uterine leiomyoma locus on 1q43 close to a lncRNA in the RGS7-FH interval. Endocr Relat Cancer. 2015;22(4):633–43. https://doi.org/10.1530/erc-15-0208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu H, Lv Z, An C, Shi M, Pan W, Zhou L, et al. Onco-lncRNA HOTAIR and its functional genetic variants in papillary thyroid carcinoma. Sci Rep. 2016;6(1):31969. https://doi.org/10.1038/srep31969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu K, Mao X, Chen Y, Li T, Ton H. Regulatory role of long non-coding RNAs during reproductive disease. Am J Transl Res. 2018;10(1):1–12.

    PubMed  PubMed Central  Google Scholar 

  70. Li Q, Feng Y, Chao X, Shi S, Liang M, Qiao Y, et al. HOTAIR contributes to cell proliferation and metastasis of cervical cancer via targeting miR-23b/MAPK1 axis. Biosci Rep. 2018;38(1). https://doi.org/10.1042/BSR20171563.

  71. Farzaneh F, Saravani M, Esmailpoor M, Mokhtari M, Teimoori B, Rezaei M, et al. Association of HOTAIR gene polymorphisms and haplotypes with uterine leiomyoma susceptibility in southeast of Iran. Mol Biol Rep. 2019;46(4):4271–7. https://doi.org/10.1007/s11033-019-04881-w.

    Article  CAS  PubMed  Google Scholar 

  72. George JW, Fan H, Johnson B, Carpenter TJ, Foy KK, Chatterjee A, et al. Integrated epigenome, exome, and transcriptome analyses reveal molecular subtypes and homeotic transformation in uterine fibroids. Cell Rep. 2019;29(12):4069–85 e6. https://doi.org/10.1016/j.celrep.2019.11.077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. 2011;472(7341):120–4.

  74. Ghafouri-Fard S, Dashti S, Taheri M. The HOTTIP (HOXA transcript at the distal tip) lncRNA: review of oncogenic roles in human. Biomed Pharmacother. 2020;127:110158. https://doi.org/10.1016/j.biopha.2020.110158.

    Article  CAS  PubMed  Google Scholar 

  75. Yan Y, Cooper C, Hamedani MK, Guppy B, Xu W, Tsuyuki D, et al. The steroid receptor RNA activator protein (SRAP) controls cancer cell migration/motility. FEBS Lett. 2015;589(24 Pt B):4010–8. https://doi.org/10.1016/j.febslet.2015.11.007.

    Article  CAS  PubMed  Google Scholar 

  76. Lin K, Zhan H, Ma J, Xu K, Wu R, Zhou C, et al. Silencing of SRA1 regulates ER expression and attenuates the growth of stromal cells in ovarian endometriosis. Reprod Sci. 2017;24(6):836–43. https://doi.org/10.1177/1933719116670036.

    Article  CAS  PubMed  Google Scholar 

  77. Cooper C, Guo J, Yan Y, Chooniedass-Kothari S, Hube F, Hamedani MK, et al. Increasing the relative expression of endogenous non-coding Steroid Receptor RNA Activator (SRA) in human breast cancer cells using modified oligonucleotides. Nucleic Acids Res. 2009;37(13):4518–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sheng L, Ye L, Zhang D, Cawthorn WP, Xu B. New insights into the long non-coding RNA SRA: physiological functions and mechanisms of action. Front Med (Lausanne). 2018;5(244):244. https://doi.org/10.3389/fmed.2018.00244.

    Article  Google Scholar 

  79. Zhang H, Yu Y, Zhang K, Liu X, Dai Y, Jiao X. Targeted inhibition of long non-coding RNA H19 blocks anaplastic thyroid carcinoma growth and metastasis. Bioengineered. 2019;10(1):306–15. https://doi.org/10.1080/21655979.2019.1642722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Raveh E, Matouk IJ, Gilon M, Hochberg A. The H19 Long non-coding RNA in cancer initiation, progression and metastasis–a proposed unifying theory. 2015;14(1):184.

  81. Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. 2018;24(3):257–77.

  82. Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J Anim Sci Technol. 2018;60(1):25. https://doi.org/10.1186/s40781-018-0183-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. 2007;132(1):330–42.

  84. Yang C, Tang R, Ma X, Wang Y, Luo D, Xu Z, et al. Tag SNPs in long non-coding RNA H19 contribute to susceptibility to gastric cancer in the Chinese Han population. Oncotarget. 2015;6(17):15311–20. https://doi.org/10.18632/oncotarget.3840.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Quaye L, Tyrer J, Ramus SJ, Song H, Wozniak E, Di Cioccio RA et al. Association between common germline genetic variation in 94 candidate genes or regions and risks of invasive epithelial ovarian cancer. 2009;4(6):e5983.

  86. Gong WJ, Yin JY, Li XP, Fang C, Xiao D, Zhang W, et al. Association of well-characterized lung cancer lncRNA polymorphisms with lung cancer susceptibility and platinum-based chemotherapy response. Tumour Biol. 2016;37(6):8349–58. https://doi.org/10.1007/s13277-015-4497-5.

    Article  CAS  PubMed  Google Scholar 

  87. Bhatti P, Doody MM, Alexander BH, Yuenger J, Simon SL, Weinstock RM, et al. Breast cancer risk polymorphisms and interaction with ionizing radiation among US radiologic technologists. 2008;17(8):2007–11.

  88. Aissani B, Zhang K, Wiener H. Genetic determinants of uterine fibroid size in the multiethnic NIEHS uterine fibroid study. Int J Mol Epidemiol Genet. 2015;6(1):9–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Farzaneh F, Salimi S, Razavi M, Rezaei M, Saravani M. Association of H19 rs3741219 polymorphism with the susceptibility to uterine leiomyomas. 2020;19:100623.

  90. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991;349(6304):38–44.

    Article  CAS  PubMed  Google Scholar 

  91. Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M, Komnenovic V, et al. SATB1 defines the developmental context for gene silencing by XIST in lymphoma and embryonic cells. Dev Cell. 2009;16(4):507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang Z, Jiang X, Jiang X, Zhao H. X-inactive-specific transcript: a long noncoding RNA with complex roles in human cancers. Gene. 2018;679:28–35.

    Article  CAS  PubMed  Google Scholar 

  93. Chuang T-D, Rehan A, Khorram O. Functional role of the long noncoding RNA X-inactive specific transcript in leiomyoma pathogenesis. Fertil Steril. 2021;115(1):238–47.

    Article  CAS  PubMed  Google Scholar 

  94. Ciarmela P, Petraglia F. New epigenetic mechanism involved in leiomyoma formation. Fertil Steril. 2021;115(1):94–5.

    Article  PubMed  Google Scholar 

  95. Sato S, Maekawa R, Yamagata Y, Asada H, Tamura I, Lee L, et al. Potential mechanisms of aberrant DNA hypomethylation on the x chromosome in uterine leiomyomas. J Reprod Dev. 2013.

  96. Arriaga-Canon C, De La Rosa-Velázquez IA, González-Barrios R, Montiel-Manríquez R, Oliva-Rico D, Jiménez-Trejo F, et al. The use of long non-coding RNAs as prognostic biomarkers and therapeutic targets in prostate cancer. 2018;9(29):20872.

  97. Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. 2017;140(9):1955–67.

  98. Ma Y-S, Shi Y, Liu J-B, Wu T-M, Jia C-Y, Yang H-Q et al. Targeting long non-coding RNA to therapeutically regulate gene expression in cancer. 2020.

    Google Scholar 

  99. Pecero ML, Salvador-Bofill J, Molina-Pinelo S. Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer. 2019;42(1):1–12.

  100. Yang Q-Q, Deng Y-F. Long non-coding RNAs as novel biomarkers and therapeutic targets in head and neck cancers. Pathology. 2014;7(4):1286.

    Google Scholar 

  101. Chen J, Wang R, Zhang K, Chen LB. Long non-coding RNAs in non-small cell lung cancer as biomarkers and therapeutic targets. Medicine. 2014;18(12):2425–36.

    CAS  Google Scholar 

  102. Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895–910. https://doi.org/10.1016/j.biocel.2013.05.030.

    Article  CAS  PubMed  Google Scholar 

  103. Salama EA, Adbeltawab RE, El Tayebi HM. XIST and TSIX: novel cancer immune biomarkers in PD-L1-overexpressing breast cancer patients. Front Oncol. 2020;9:1459.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Xu S, Yi XM, Tang CP, Ge JP, Zhang ZY, Zhou WQ. Long non-coding RNA ATB promotes growth and epithelial-mesenchymal transition and predicts poor prognosis in human prostate carcinoma. Oncol Rep. 2016;36(1):10–22. https://doi.org/10.3892/or.2016.4791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ke L, Xu SB, Wang J, Jiang XL, Xu MQ. High expression of long non-coding RNA ATB indicates a poor prognosis and regulates cell proliferation and metastasis in non-small cell lung cancer. Clin Transl Oncol. 2017;19(5):599–605. https://doi.org/10.1007/s12094-016-1572-3.

    Article  CAS  PubMed  Google Scholar 

  106. Saito T, Kurashige J, Nambara S, Komatsu H, Hirata H, Ueda M, et al. A long non-coding RNA activated by transforming growth factor-β is an independent prognostic marker of gastric cancer. 2015;22(3):915–22.

  107. Wu Q-Y, Li X, Miao Z-N, Ye J-X, Wang B, Zhang F, et al. Long non-coding RNAs: a new regulatory code for osteoporosis. Front Endocrinol. 2018;9:587.

    Article  Google Scholar 

  108. Zhuang W, Ge X, Yang S, Huang M, Zhuang W, Chen P, et al. Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells. 2015;33(6):1985–97.

    Article  CAS  PubMed  Google Scholar 

  109. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282(34):24731–42. https://doi.org/10.1074/jbc.M702029200.

    Article  CAS  PubMed  Google Scholar 

  110. Mondal T, Subhash S, Vaid R, Enroth S, Uday S, Reinius B et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. 2015;6:7743.

  111. Gutschner T, Richtig G, Haemmerle M, Pichler MJC, Reviews M. From biomarkers to therapeutic targets—the promises and perils of long non-coding RNAs in cancer. 2018;37(1):83–105.

  112. Hao S, Shao Z. HOTAIR is upregulated in acute myeloid leukemia and that indicates a poor prognosis. Pathology. 2015;8(6):7223.

    CAS  Google Scholar 

  113. Cao T, Jiang Y, Wang Z, Zhang N, Al-Hendy A, Mamillapalli R et al. H19 lncRNA identified as a master regulator of genes that drive uterine leiomyomas. 2019;38(27):5356-66.

  114. Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, Procino A, et al. Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology. 2014;59(3):911–23. https://doi.org/10.1002/hep.26740.

    Article  CAS  PubMed  Google Scholar 

  115. Ho J-C, Lee C-H, Hong C-H. Targeting steroid receptor RNA activator (SRA), a long non-coding RNA, enhances melanogenesis through activation of TRP1 and inhibition of p38 phosphorylation. PLoS One. 2020;15(8):e0237577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Biology. 2013;45(8):1895–910.

    CAS  Google Scholar 

  117. Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J et al. LncRNA–FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal Cancer by regulating PKM2 signaling. 2018;24(19):4808-19.

  118. Lee J, Park HY, Kim WW, Lee SJ, Jeong JH, Kang SH, et al. Biological function of long noncoding RNA snaR in HER2-positive breast cancer cells. Tumour Biol. 2017;39(6):1010428317707374. https://doi.org/10.1177/1010428317707374.

    Article  CAS  PubMed  Google Scholar 

  119. Wei M-M, Zhou G-B. Long non-coding RNAs and their roles in non-small-cell lung cancer. Proteomics, Bioinformat. 2016;14(5):280–8.

    Google Scholar 

  120. Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol. 2012;19(1):60–71. https://doi.org/10.1016/j.chembiol.2011.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Drolet DW, Green LS, Gold L, Janjic N. Fit for the eye: aptamers in ocular disorders. Nucleic Acid Ther. 2016;26(3):127–46. https://doi.org/10.1089/nat.2015.0573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genom Proteom Bioinformat. 2016;14(1):42–54. https://doi.org/10.1016/j.gpb.2015.09.006.

    Article  Google Scholar 

  123. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. 2011;147(2):358–69.

  124. J-h Y, Yang F, Wang F, Ma J-Z, Guo Y-J, Tao Q-F, et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. 2014;25(5):666–81.

  125. Jiang MC, Ni JJ, Cui WY, Wang BY, Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res. 2019;9(7):1354–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Dizaji BF. Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. 2020;21(1):1-15.

  127. Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochem J. 2017;474(24):4219–51. https://doi.org/10.1042/BCJ20170079.

    Article  CAS  PubMed  Google Scholar 

  128. Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of antisense drugs. Annu Rev Pharmacol Toxicol. 2017;57:81–105. https://doi.org/10.1146/annurev-pharmtox-010716-104846.

    Article  CAS  PubMed  Google Scholar 

  129. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-Scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159(3):647–61. https://doi.org/10.1016/j.cell.2014.09.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296(5567):550–3. https://doi.org/10.1126/science.1068999.

    Article  CAS  PubMed  Google Scholar 

  131. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8. https://doi.org/10.1038/35078107.

    Article  CAS  PubMed  Google Scholar 

  132. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11. https://doi.org/10.1038/35888.

    Article  CAS  PubMed  Google Scholar 

  133. Pandey V, Tripathi A, Rani A, Dubey PK. Deoxyelephantopin, a novel naturally occurring phytochemical impairs growth, induces G2/M arrest, ROS-mediated apoptosis and modulates lncRNA expression against uterine leiomyoma. Biomed Pharmacother. 2020;131:110751.

    Article  CAS  PubMed  Google Scholar 

  134. Shang C, Guo Y, Zhang H, Xue Y-X. Long noncoding RNA HOTAIR is a prognostic biomarker and inhibits chemosensitivity to doxorubicin in bladder transitional cell carcinoma. Pharmacology. 2016;77(3):507–13.

    CAS  Google Scholar 

  135. Tang L, Zhang W, Su B, Yu BJ. Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. 2013;2013.

  136. Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med. 2015;12(1):1–9. https://doi.org/10.7497/j.issn.2095-3941.2015.0006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cai H, Yao J, An Y, Chen X, Chen W, Wu D et al. LncRNA HOTAIR acts as competing endogenous RNA to control the expression of Notch3 via sponging miR-613 in pancreatic cancer. 2017;8(20):32905.

  138. Cai H, An Y, Chen X, Sun D, Chen T, Peng Y, et al. Epigenetic inhibition of miR-663b by long non-coding RNA HOTAIR promotes pancreatic cancer cell proliferation via up-regulation of insulin-like growth factor 2. Oncotarget. 2016;7(52):86857–70. https://doi.org/10.18632/oncotarget.13490.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 2011;18(5):1243–50. https://doi.org/10.1245/s10434-011-1581-y.

    Article  PubMed  Google Scholar 

  140. Özeş AR, Wang Y, Zong X, Fang F, Pilrose J, Nephew KP. Therapeutic targeting using tumor specific peptides inhibits long non-coding RNA HOTAIR activity in ovarian and breast cancer. 2017;7(1):1-11.

  141. Zhou W, Ye XL, Xu J, Cao MG, Fang ZY, Li LY, et al. The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci Signal. 2017;10(483). https://doi.org/10.1126/scisignal.aak9557.

  142. Schwarzenbach H. Biological and clinical relevance of H19 in colorectal cancer patients. EBioMedicine. 2016;13:9–10. https://doi.org/10.1016/j.ebiom.2016.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lv J, Ma L, Chen X-L, Huang X-H, Wang QJ. Downregulation of LncRNAH19 and MiR-675 promotes migration and invasion of human hepatocellular carcinoma cells through AKT/GSK-3β/Cdc25A signaling pathway. Technology. 2014;34(3):363–9.

    CAS  Google Scholar 

  144. Han D, Gao X, Wang M, Qiao Y, Xu Y, Yang J, et al. Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget. 2016;7(16):22159–73. https://doi.org/10.18632/oncotarget.8063.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 2006;66(10):5330–7. https://doi.org/10.1158/0008-5472.CAN-06-0037.

    Article  CAS  PubMed  Google Scholar 

  146. Meseure D, Vacher S, Lallemand F, Alsibai KD, Hatem R, Chemlali W, et al. Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. Br J Cancer. 2016;114(12):1395–404. https://doi.org/10.1038/bjc.2016.123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang X-F, Liu T, Li Y, Li S. Overexpression of long non-coding RNA CCAT1 is a novel biomarker of poor prognosis in patients with breast cancer. Pathology. 2015;8(8):9440.

    Google Scholar 

  148. Lessard L, Liu M, Marzese DM, Wang H, Chong K, Kawas N et al. The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching. 2015;135(10):2464-74.

  149. Brown JM, Wasson MD, Marcato P. The missing Lnc: the potential of targeting triple-negative breast cancer and cancer stem cells by inhibiting long non-coding RNAs. Cells. 2020;9(3):763. https://doi.org/10.3390/cells9030763.

    Article  CAS  PubMed Central  Google Scholar 

  150. Zhen S, Hua L, Liu YH, Sun XM, Jiang MM, Chen W, et al. Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer. Oncotarget. 2017;8(6):9634–46. https://doi.org/10.18632/oncotarget.14176.

    Article  PubMed  Google Scholar 

Download references

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Zahra Falahati and Masoud Mohseni-Dargah performed the literature search and drafted the manuscript. Reza Mirfakhraie, who had the idea for the article, critically revised the work.

Corresponding author

Correspondence to Reza Mirfakhraie.

Ethics declarations

Ethics Approval

This is a review article. Ethical consent is not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zahra Falahati and Masoud Mohseni-Dargah should be considered the joint first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falahati, Z., Mohseni-Dargah, M. & Mirfakhraie, R. Emerging Roles of Long Non-coding RNAs in Uterine Leiomyoma Pathogenesis: a Review. Reprod. Sci. 29, 1086–1101 (2022). https://doi.org/10.1007/s43032-021-00571-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00571-w

Keywords

Navigation