Skip to main content

Advertisement

Log in

High blue carbon stock in mangrove forests of Eastern India

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Present study focuses on the carbon sequestration potential of five dominant mangrove species (Avicenia marina, Avicenia officinalis, Excoecaria agallocha, Rhizophora mucronata and Xylocarpous granatum) in Bhitarkanika and Mahanadi mangrove ecosystem. Water and soil parameters were sampled and analyzed for 10 selected stations along with aboveground biomass (AGB) and aboveground C (AGC) values. AGB value in the study area ranged from 15.00 ± 2.12 to 70.09 ± 6.68 tha−1 for A. marina, 26.13 ± 3.19 tha−1 to 616.94 ± 50.15 tha−1 for A. officinalis, 3.56 ± 0.96 tha−1 to 98.66 ± 5.24 tha−1 for E. agallocha, 7.06 ± 2.21 tha−1 to 224.41 ± 21.20 tha−1 for R. mucronata, and 0.64 ± 0.21 tha−1 to 6.25 ± 1.52 tha−1 for X. granatum, respectively. AGC value ranged from 7.63 ± 1.08 to 35.65 ± 2.63 tha−1 for A. marina, 1.73 ± 0.01 tha−1 to 280.83 ± 21.29 tha−1 for A. officinalis, 1.64 ± 0.41 tha−1 to 44.95 ± 2.53 tha−1 for E. agallocha, 3.44 ± 1.45 tha−1 to 114.05 ± 10.29 tha−1 for R. mucronata and 0.31 ± 0.10 tha−1 to 3.25 ± 0.31 tha−1 for X. granatum, respectively. The average SOC values in tha−1 varied from 3.52 ± 0.12 to 7.71 ± 0.45. The total carbon (AGC + SOC) calculated for the study area varied from 55.20 ± 7.90 to 330.41 ± 111.97 tha−1 with a mean total carbon of 124.11 ± 30.14 which is equivalent to 455.47 ± 110.56 tons of CO2. Considering the total area of Bhitarkanika and Mahanadi mangrove ecosystem (672 + 141,589) to be 142,261 km2, the mean CO2e be 455.47 ± 110.56 tones, it is approx. 64,795,617.67 ≅ 64.80 TgC that were absorbed from the atmosphere, thus reducing the amount of carbon dioxide from the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agarwal S, Banerjee K, Pal N, Mallik K, Bal G, Pramanick P, Mitra A (2017) Carbon sequestration by mangrove vegetations: a case study from Mahanadi mangrove wetland. J Environ Sci Comput Sci Eng Technol 7(1):016–029

    Google Scholar 

  • Amarasinghe MD, Balasubramaniam S (1992) Net primary productivity of two mangrove forest stands on the northwest coast of Sri Lanka. Hydrobiologia 247:37–47

    Google Scholar 

  • Banerjee K, Sengupta K, Raha AK, Mitra A (2013) Salinity based allometric equations for biomass estimation of Sundarban mangrove. Biomass Bioenergy 56:382–391

    Google Scholar 

  • Banerjee K, Bal G, Mitra A (2018) How soil texture affects the organic carbon load in the mangrove ecosystem? A case study from Bhitarkanika, Odisha. In: Singh VP, Yadav S, Yadava RM (eds) Environmental pollution. Springer Nature Singapore Pvt Ltd, Singapore, pp 329–341

    Google Scholar 

  • Brown S, Gaston G (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: application to tropical Africa. Environ Monit Assess 38:157–168

    CAS  PubMed  Google Scholar 

  • Brown S, Lugo AE (1984) Biomass of tropical forests: a new estimate based on forest volume. Science 223:1290–1293

    CAS  PubMed  Google Scholar 

  • Brown S, Lugo AE (1992) Aboveground biomass estimations for tropical moist forests of the Brazilian Amazon. Interciencia 17:8–18

    CAS  Google Scholar 

  • Camacho LD, Gevaña DT, Carandang AP, Camacho SC, Combalicer EA, Rebugio LL, Youn YC (2011) Tree biomass and carbon stock of a community managed mangrove forest in Bohol, Philippines. For Sci Technol 7:161–167

    Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    CAS  PubMed  Google Scholar 

  • Cheeseman J (1994) Depression of photosynthesis in mangrove canopies. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis in mangrove canopies: from molecular mechanisms to the field. Bios, Oxford, pp 377–389

    Google Scholar 

  • Christensen B (1978) Biomass and productivity of Rhizophora apiculata B1 in a mangrove in southern Thailand. Aquat Bot 4:43–52

    Google Scholar 

  • Donato CD, Kauffman JB, Murdiarso D, Kurni–Anto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    CAS  Google Scholar 

  • Doyen (1986) La mangrove a usage multiple de I’estuarine Saloum (Senegal). In: Dost H (ed) Selected Papers of the Dakar Symposium on Acid Sulphate Soils, (Publication no. 44). International Institute for Land Reclamation and Improvement, Wageningen, pp 176–201

    Google Scholar 

  • Estrada GCD, Soares MG (2017) Global patterns of aboveground carbon stock and sequestration in mangroves. An Acad Bras Ciênc 89(2):973–989

    CAS  PubMed  Google Scholar 

  • Ferreira TO, Otero XL, Vidal-Torrado P, Macias F (2007a) Redox processes in mangrove soils under Rhizophora mangle in relation to different environmental conditions. Soil Sci Soc Am J 71:484–491

    CAS  Google Scholar 

  • Ferreira TO, Vidal-Torrado P, Otero XL, Macias F (2007b) Are mangrove forest substrates sediments or soils? A case study in southeastern Brazil. CATENA 70:79–91

    Google Scholar 

  • Ferreira TO, Otero XL, de Souza Jr VS, Vidal-Torrado P, Macias F, Firme LP (2010) Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (Sao Paulo). J Soil Sediment 10:995–1006

    CAS  Google Scholar 

  • Foody GM (2003) Remote sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development. Int J Remote Sens 24:4035–4046

    Google Scholar 

  • FSI (1987) The state forest report, Government of India, Ministry of Environment and Forest

  • FSI (2017) Ministry of Environment and Forests, State Forest Report, Dehradun

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek Z, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159

    Google Scholar 

  • Golley F, Odum HT, Wilson R (1962) The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology 43:9–19

    CAS  Google Scholar 

  • Hossain MD, Nuruddin AA (2016) Soil and mangrove: a review. J Environ Sci Technol 9:198–207

    Google Scholar 

  • Imbert D, Rollet B (1989) Phytomass eaerienneet production primairedans la mangrove du Grand Cul–de–Sac Maria (Guadeloupe, Antilles francaises). Bull Ecol 20:27–39

    Google Scholar 

  • IPCC (2018) Special Report on Global Warming of 1.5 °C

  • IUCN (2019) The IUCN Red List of Threatened Species. Version 2019–1. http://www.iucnredlist.org. Accessed 20 Oct 2019

  • Joshi HG, Ghose M (2014) Community structure, species diversity, and aboveground biomass of the Sundarbans mangrove swamps. Trop Ecol 55(3):283–303

    Google Scholar 

  • Kasawani I, Kamaruzaman J, Nurun-Nadhirah MI (2007) Biological diversity assessment of Tok Bali mangrove forest, Kelantan, Malaysia. WSEAS Trans Environ Dev 3(2):30–385

    Google Scholar 

  • Kathiresan K, Rajendran N, Thangadurai G (1996) Growth of mangrove seedlings in the intertidal area of Vellar estuary, southeast coast of India. Indian J Mar Sci 25:240–243

    Google Scholar 

  • Kathiresan K, Gomathi V, Anburaj R, Saravanakumar K, Asmathunisha N, Sahu SK, Shanmugaarasu V, Anandhan S (2013) Carbon sequestration potential of Rhizophora mucronata and A. marina as influenced by age, season, growth and sediment characteristics in southeast coast of India. J Coast Conserv 17(3):397

    Google Scholar 

  • Komiyama A, Moriya H, Prawiroatmodjo S, Toma T, Ogino K (1988) Forest primary productivity. In: Ogino K, Chihara M (eds) Biological system of mangrove. Ehime University, Ehime, pp 97–117

    Google Scholar 

  • Komiyama A, Poungparn S, Kato S (2005) Common allometric equations for estimating the tree weight of mangroves. J Trop Ecol 21(4):471–477

    Google Scholar 

  • Lakyda P, Shvidenko A, Bilous A, Myroniuk V, Matsala M, Zibtsev S, Schepaschenko D, Holiaka D, Vasylyshyn R, Lakyda I, Diachuk P, Kraxner F (2019) Impact of disturbances on the carbon cycle of forest ecosystems in Ukrainian Polissya. Forests 10:337–360

    Google Scholar 

  • Lal JB (2007) Forest ecosystems and carbon sequestration in India, ecosystem diversity and carbon sequestration, challenges and a way out for ushering in a sustainable future. Ecosyst Chapter 5:9–14

    Google Scholar 

  • Le Quere CL, Andrew RM, Friedlingstein P, Sitch S, Zheng B (2018) Global carbon budget 2018. Earth Syst Sci Data 10:2141–2194

    Google Scholar 

  • Lee SY, Primavera JH, Dahdouh-Guebas F, McKee K, Bosire JO, Cannicci S, Diele K, Fromard F, Koedam N, Marchand C, Mendelssohn I, Mukherjee N, Record S (2014) Ecological role and services of tropical mangrove ecosystems: a reassessment. Glob Ecol Biogeogr 23(7):726–743

    Google Scholar 

  • Lu D (2006) The potential and challenge of remote sensing–based biomass estimation. Int J Remote Sens 27(7):1297–1328

    Google Scholar 

  • Lugo AE, Snedaker C (1974) The ecology of mangroves. Annu Rev Ecol Evol Syst 5:39–64

    Google Scholar 

  • Mall LP, Singh VP, Garge A (1991) Study of biomass, litter fall, litter decomposition and soil respiration in monogeneric mangrove and mixed mangrove forests of Andaman Islands. Trop Ecol 32:144–152

    Google Scholar 

  • Mitra A (2013) Mangroves: a unique gift of nature. In: Mitra A (ed) Sensitivity of mangrove ecosystem to changing climate. Springer, New Delhi, pp 33–54

    Google Scholar 

  • Mitra A, Sundaresan J (2016) How to study stored carbon in mangroves, published by CSIR-National Institute of Science Communication and Information Resources (NISCAIR), ISBN: 978-81-7236-349-9

  • Mitra A, Banerjee K, Sengupta K, Gangopadhyay A (2009) Pulse of climate change in Indian Sundarbans: a myth or reality? Natl Acad Sci Lett 32:1–2

    Google Scholar 

  • Mitra A, Chowdhury R, Sengupta K, Banerjee K (2010) Impact of salinity on mangroves of Indian Sundarbans. J Coast Environ 1(1):71–80

    Google Scholar 

  • Mitra A, Sengupta K, Banerjee K (2011) Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. For Ecol Manag 261(7):1325–1335

    Google Scholar 

  • Murdiyarso D, Purbopuspit J, Kauffman JB, Warren MW, Sasmito SD, Donato DC, Manuri S, Krisnawati H, Taberima S, Kurnianto S (2015) The potential of Indonesian mangrove forests for global climate change mitigation. Nat Clim Change 5:1089–1092

    CAS  Google Scholar 

  • Nguyen H, Cao D, Schmitt K (2013) Soil particle–size composition and coastal erosion and accretion study in Soc Trang mangrove forests. J Coast Conserv 17(1):93–104

    Google Scholar 

  • NOAA (2019) Global climate report, 2019

  • Omar R, Masera Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ, Pussinen A, Jong BHJ, Mohren GMJ (2003) Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2 FIX vol 2 approach. Ecol Mode 164(2–3):177–199

    Google Scholar 

  • Panda S, Panda S (2015) Carbon sequestration—a new vista towards sustainable development. J Emerg Technol Adv Eng 5(5):111–118

    Google Scholar 

  • Putz F, Chan HT (1986) Tree growth, dynamics, and productivity in a mature mangrove forest in Malaysia. For Ecol Manag 17:211–230

    Google Scholar 

  • Ren H, Chen H, Li ZA, Han W (2010) Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant Soil 327:279–291

    CAS  Google Scholar 

  • Roy Choudhuri PK (1991) Biomass production of mangrove plantation in Sundarbans, West Bengal (India)—a case study. Indian For 177:3–12

    Google Scholar 

  • Singh VP, Odaki K (2004) Mangrove ecosystem structure and function. Scientific Publishers, Jodhpur, pp 1–279

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. ISME publication, London, p 320

    Google Scholar 

  • Steininger MK (2000) Satellite estimation of tropical secondary forest aboveground biomass data from Brazil and Bolivia. Int J Remote Sens 21:1139–1157

    Google Scholar 

  • Suzuki E, Tagawa H (1983) Biomass of a mangrove forest and a sedge marsh on Shigaki Island, South Japan. Jpn J Ecol 33:231–234

    Google Scholar 

  • Thenkabail PS, Stucky N, Griscom BW, Ashton MS, Diels J, van der Meer B, Enclona E (2004) Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. Int J Remote Sens 25:5447–5472

    Google Scholar 

  • Twilley RR, Chen RH, Hargis T (1992) Carbon sinks in mangrove forests and their implications to the carbon budget of tropical coastal ecosystems. Water Air Soil Pollut 64:265–288

    CAS  Google Scholar 

  • UNEP-WCMC (2006) Shoreline protection and other ecosystem services from mangroves and coral reefs, UNEP-WCMC, Cambridge, UK

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    CAS  Google Scholar 

  • Wijaya A, Liesenberg V, Gloaguen R (2010) Retrieval of forest attributes in complex successional forests of Central Indonesia: modeling and estimation of bitemporal data. For Ecol Manag 259(12):2315–2326

    Google Scholar 

  • Woodroffe CD (1985) Studies of a mangrove basin, Tuff Crater, New Zealand. I: mangrove biomass and production of detritus. Estuar Coast Shelf Sci 20:265–280

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ministry of Earth Sciences, Govt. of India project (Sanction No. MoES/36/OOIS/Extra/44/2015 dated 29th November, 2016) for providing financial support. We would like to thank Institute of Forest Biodiversity, Hyderabad for helping us in analysing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, K., Sahoo, C.K., Bal, G. et al. High blue carbon stock in mangrove forests of Eastern India. Trop Ecol 61, 150–167 (2020). https://doi.org/10.1007/s42965-020-00072-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-020-00072-y

Keywords

Navigation