Skip to main content
Log in

Wilton Ripples in Weakly Nonlinear Dispersive Models of Water Waves: Existence and Analyticity of Solution Branches

  • Original Article
  • Published:
Water Waves Aims and scope Submit manuscript

Abstract

Traveling waves on the surface of the ocean play an important role in many oceanographic processes which necessitates a detailed quantitative understanding of their properties. The water wave equations, which govern the free-surface evolution of an ideal fluid, are the most successful model for this phenomena, but are exceedingly difficult to analyze due to their strongly nonlinear character and the fact that they are posed on a domain with moving boundary. For this reason, weakly nonlinear dispersive models are an essential tool for practitioners, and in this contribution, we study traveling wave solutions of a broad class of such models. The simplest family of traveling wave solutions are the Stokes waves which can be characterized as simple bifurcation (one-dimensional null space of the linearized operator) from the trivial (flat-water) branch of solutions. We focus our analysis on the much less studied non-simple case of Wilton ripples which have linear behavior characterized by two co-propagating harmonics (a two-dimensional null space of the linearized operator). More specifically, we show that such branches of solutions exist for a class of nonlinear dispersive model equations, and that they are analytic with respect to a natural wave height/slope parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheson, D.J.: Elementary Fluid Dynamics. The Clarendon Press, Oxford University Press, New York (1990)

    MATH  Google Scholar 

  2. Akers, B., Ambrose, D., Sulon, D.: Periodic travelling interfacial hydroelastic waves with or without mass II: multiple bifurcations and ripples. Eur. J. Appl. Math. 30(4), 756–790 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akers, B., Gao, W.: Wilton ripples in weakly nonlinear model equations. Commun. Math. Sci. 10(3), 1015–1024 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akers, B., Milewski, P.A.: A model equation for wavepacket solitary waves arising from capillary-gravity flows. Stud. Appl. Math. 122(3), 249–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akers, B., Nicholls, D.P.: Traveling waves in deep water with gravity and surface tension. SIAM J. Appl. Math. 70(7), 2373–2389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrose, D., Strauss, W., Wright, J.: Global bifurcation theory for periodic traveling interfacial gravity–capillary waves. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 33(4), 1081–1101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amundsen, D., Benney, D.: Resonances in dispersive wave systems. Stud. Appl. Math. 105(3), 277–300 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bona, J., Albert, J., Restrepo, J.: Solitary-wave solutions of the Benjamin equation. SIAM J. Appl. Math. 59(6), 2139–2161 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christodoulides, P., Dias, F.: Resonant capillary-gravity interfacial waves. J. Fluid Mech. 265, 303–343 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Craig, W.: Surface water waves and tsunamis. J. Dynam. Differential Equations 18(3), 525–549 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Craig, W., Nicholls, D.P.: Traveling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal. 32(2), 323–359 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Craig, W., Nicholls, D.P.: Traveling gravity water waves in two and three dimensions. Eur. J. Mech. B Fluids 21(6), 615–641 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Craik, A.: George Gabriel Stokes on water wave theory. Ann. Rev. Fluid Mech. 37, 23–42 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ehrnström, M., Johnson, M., Maehlen, O., Remonato, F.: On the bifurcation diagram of the capillary-gravity Whitham equation. arXiv preprint arXiv:1901.03534 (2019)

  17. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  18. Friedman, A.: Partial Differential Equations, original edn. Robert E. Krieger Publishing Co., Huntington (1976)

    Google Scholar 

  19. Guyenne, P., Nicholls, D.P., Sulem, C. (eds.): Hamiltonian Partial Differential Equations and Applications, Fields Institute Communications, vol. 75. Springer, New York (2015)

    Google Scholar 

  20. Harrison, W.: The influence of viscosity and capillarity on waves of finite amplitude. Proc. Lond. Math. Soc. 2(1), 107–121 (1909)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haupt, S., Boyd, J.: Modeling nonlinear resonance: a modification to the Stokes’ perturbation expansion. Wave Motion 10(1), 83–98 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Henderson, D., Hammack, J.: Experiments on ripple instabilities. Part 1. Resonant triads. J. Fluid Mech. 184, 15–41 (1987)

    Article  Google Scholar 

  23. Jones, M., Toland, J.: The bifurcation and secondary bifurcation of capillary-gravity waves. Proc. R. Soc. Lond. Ser. A 399, 391–417 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kamesvara, R.: On ripples of finite amplitude. Proc. Indian Ass. Cultiv. Sci 6, 175–193 (1920)

    Google Scholar 

  25. Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soci. Jpn. 33(1), 260–264 (1972)

    Article  Google Scholar 

  26. Kolodko, J., Gic-Grusza, G.: A note on the vertical distribution of momentum transport in water waves. Oceanol. Hydrobiol. Stud. 44, 563–568 (2015)

    Article  Google Scholar 

  27. Kress, R.: Linear Integral Equations, 3rd edn. Springer-Verlag, New York (2014)

    Book  MATH  Google Scholar 

  28. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  29. Lamb, H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  30. Levi-Civita, T.: Détermination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann. 93, 264–314 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  31. Linton, C.M., McIver, P.: Handbook of Mathematical Techniques for Wave/Structure Interactions. Chapman & Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  32. Longuet-Higgins, M.: Some relations between Stokes coefficients in the theory of gravity waves. J. Inst. Math. Appl. 22, 261 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. McGoldrick, L.F.: An experiment on second-order capillary gravity resonant wave interactions. J. Fluid Mech. 40, 251–271 (1970)

    Article  Google Scholar 

  34. McGoldrick, L.F.: On Wilton’s ripples: a special case of resonant interactions. J. Fluid Mech. 42(1), 193–200 (1970)

    Article  MATH  Google Scholar 

  35. Moldabayev, D., Kalisch, H., Dutykh, D.: The Whitham equation as a model for surface water waves. Physica D 309, 99–107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nicholls, D.P.: Traveling gravity water waves in two and three dimensions. Ph.D. thesis, Brown University (1998)

  37. Nicholls, D.P.: Traveling water waves: Spectral continuation methods with parallel implementation. J. Comput. Phys. 143(1), 224–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nicholls, D.P., Reitich, F.: On analyticity of traveling water waves. Proc. Roy. Soc. Lond., A 461(2057), 1283–1309 (2005)

    MATH  Google Scholar 

  39. Nicholls, D.P., Reitich, F.: Rapid, stable, high-order computation of traveling water waves in three dimensions. Eur. J. Mech. B Fluids 25(4), 406–424 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Perlin, M., Henderson, D., Hammack, J.: Experiments on ripple instabilities. Part 2 selective amplification of resonant triads. J. Fluid Mech. 219, 51–80 (1990)

    Article  Google Scholar 

  41. Reeder, J., Shinbrot, M.: On Wilton ripples. I. Formal derivation of the phenomenon. Wave Motion 3(2), 115–135 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Reeder, J., Shinbrot, M.: On Wilton ripples II: Rigorous results. Arch. Rat. Mech. Anal. 77, 321–347 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  43. Restrepo, J.M., Bona, J.L.: Discretization of a model for the formation of longshore sand ridges. J. Comput. Phys. 122(1), 129–142 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Restrepo, J.M., Bona, J.L.: Three-dimensional model for the formation of longshore sand structures on the continental shelf. Nonlinearity 8(5), 781–820 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Schwartz, L.W.: Computer extension and analytic continuation of Stokes’ expansion for gravity waves. J. Fluid Mech. 62, 553–578 (1974)

    Article  MATH  Google Scholar 

  46. Schwartz, L.W., Vanden-Broeck, J.M.: Numerical solution of the exact equations for capillary-gravity waves. J. Fluid Mech. 95(1), 119–139 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stoker, J.J.: Water waves. Wiley, New York (1992). (The mathematical theory with applications, Reprint of the 1957 original, A Wiley-Interscience Publication)

    Book  MATH  Google Scholar 

  48. Stokes, G.: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc. 8, 441–473 (1847)

    Google Scholar 

  49. Struik, D.: Détermination rigoureuse des ondes irrotationnelles périodiques dans un canal à profondeur finie. Math. Ann. 95, 595–634 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tao, S., Hua, T.J.: Numerical simulation of pollutant transport acted by wave for a shallow water sea bay. Numer. Methods Fluids 51, 469–487 (2005)

    Article  MATH  Google Scholar 

  51. Toland, J.F.: On the existence of a wave of greatest height and Stokes’s conjecture. Proc. R. Soc. Lond. Ser. A 363(1715), 469–485 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  52. Trichtchenko, O., Deconinck, B., Wilkening, J.: The instability of Wilton ripples. Wave Motion 66, 147–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Trichtchenko, O., Milewski, P., Părău, E., Vanden-Broeck, J.M.: Stability of periodic traveling flexural-gravity waves in two dimensions. Stud. Appl. Math. 142(1), 65–90 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Tulin, M.: Remarks on energy transport in waves. In: Proceedings on the 12th International Workshop on Water Waves and Floating Bodies (1997)

  55. Vanden Broeck, J.M.: Wilton ripples generated by a moving pressure disturbance. J. Fluid Mech. 451, 193–201 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  56. Vanden-Broeck, J.M.: Gravity-Capillary Free-Surface Flows. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  57. Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics. Wiley, New York (1999). (Reprint of the 1974 original, A Wiley-Interscience Publication)

    Book  MATH  Google Scholar 

  58. Wilton, J.: On ripples. Phil. Mag. 29, 173 (1915)

    Article  MATH  Google Scholar 

  59. Zakharov, V.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Nicholls.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

David P. Nicholls gratefully acknowledges support from the National Science Foundation through Grant no. DMS-1813033. Benjamin Akers was supported during the preparation of this manuscript by the Air Force Office of Sponsored Research and the Office of Naval Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akers, B., Nicholls, D.P. Wilton Ripples in Weakly Nonlinear Dispersive Models of Water Waves: Existence and Analyticity of Solution Branches. Water Waves 3, 25–47 (2021). https://doi.org/10.1007/s42286-020-00034-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42286-020-00034-w

Keywords

Navigation