Skip to main content
Log in

Alkyne-Allene Transformation: Density Functional and in silico Studies of 5-bromo-1-(Propargyl)-7-azabenzimidazole and its 1,2-propadiene Analogue

  • Short Communication
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Allenes are important precursors for various cycloaddition reactions and they are present in several natural and synthetic medicinal compounds. One of the simplest ways of allenes preparation is through alkyne transformation. An earlier report described the base-catalyzed (Cs2CO3 or K2CO3) isomerization of 5-bromo-1-(propargyl)-7-azabenzimidazole to 5-bromo-1-(1,2-propadiene)-7-azabenzimidazole. The current work probes this transformation by computational methods at the DFT/B3LYP(M06-2X)/6–31(d) level of theory. The two isomers were docked in malaria kinase enzyme model (PbCDPK-1). The molecular descriptors such as energy gap (ΔE), global softness (S), chemical potential (σ), electrophilicity (ω) were calulated. Relative energy of the isomers (ΔEiso), free energy change (ΔGiso), enthalpy change (ΔHiso) and entropy change (ΔSiso) for the propargyl-propadiene isomerization. Results obtained indicated that the isomers were polar and strong electrophiles with charge transfer tendency. 5-bromo-1-(1,2-propadiene)-7-azabenzimidazole exhibits improved chemical softness and kinetic instability. The propargyl-propadiene isomer showed negative values for ΔEiso, ΔGiso, ΔHiso and ΔSiso. Malaria enzyme binding data were also obtained for these isomers and the 5-bromo-1-(1,2-propadiene)-7-azabenzimidazole gave a better scoring function which may be attributed to its chemical softness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Jana S, Dey A, Singsardar M, Bagdi AK (2016) J Org Chem 81:9489–9493. https://doi.org/10.1021/acs.joc.6b01916

    Article  CAS  PubMed  Google Scholar 

  2. Taylor DR (1967) Chem Rev 67:317–359. https://doi.org/10.1021/cr60247a004

    Article  CAS  Google Scholar 

  3. Xu D, Drahl MA, Williams LJ (2011) Beilstein J Org Chem 7:937–943. https://doi.org/10.3762/bjoc.7.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu L, Liu S, Chen X, Guo L, Che Y (2009) Bioorg Med Chem 17:606–613. https://doi.org/10.1016/j.bmc.2008.11.066

    Article  CAS  PubMed  Google Scholar 

  5. Zhang F, Liu S, Lu X, GuLo, Zhang H, Che Y (2009) J Nat Prod 72:1782–1785. https://doi.org/10.1021/np900512k

    Article  CAS  PubMed  Google Scholar 

  6. Hu G, Liu K, WilliamsL (2008) Org Lett 10:5493–5496. DOI: https://doi.org/10.1021/ol802338z

    Article  CAS  PubMed  Google Scholar 

  7. Jing-Yi W, Shuming Z, Xian-Yang Y, Yu-Hao W, Hong-Lin W, Shu Z, Wei T, Feng S (2022) Tetrahedron Chem 1:100007. https://doi.org/10.1016/j.tchem.2022.100007

    Article  Google Scholar 

  8. Ansell KH, Jones HM, Whalley D, Hearn A, Taylor DL, Patin EC, Chapman TM, Osborne SA, Wallace C, Birchall K, Large J, Bouloc N, Smiljanic-Hurley E, Clough B, Moon RW, Green JL, Holder AA (2014) Antimicrob Agents Chemother 58:6032–6043. https://doi.org/10.1128/AAC.02959-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oluwafemi KA (2020) Ife J Sci 22(3):175–181. https://doi.org/10.4314/ijs.v22i3.15

    Article  Google Scholar 

  10. Oluwafemi KA, Klein R, Lobb KA, Tshiwawa T, Isaacs M, Hoppe HC, Kaye PT (2022) J Mol Struct 1269:133811. https://doi.org/10.1016/j.molstruc.2022.133811

    Article  CAS  Google Scholar 

  11. Petroff JT, Omlid SM, Haloi N, Sith L, Johnson S, McCulla (2020) RD Comput Theor Chem 1189:1–10. https://doi.org/10.1016/j.comptc.2020.112979

  12. Le A, Allenes, Alkynes Development of cycloaddition reactions and application to natural product synthesis [PhD Thesis]. [Chicago]: University of Illinois, Chicago, USA;2021.https://indigo.uic.edu/articles/thesis/Allene_and_Alkyne_Development_of_Cycloaddition_Reactions_and_Application_to_Natural_Product_Synthesis/17026184

  13. Chapman TM, Osborne SA, Wallace C, Birchall K, Bouloc N, Jones HM, Keith H, Ansell KH, Taylor DL, Clough B, Green JL, Holder AA (2014) J Med Chem 57:6032–6043. https://doi.org/10.1128/AAC.02959-14

    Article  CAS  Google Scholar 

  14. Flaherty BR, Ho TG, Schmidt SH, Herberg FW, Peterson DS, Kennedy EJ (2019) ACS Infect Dis 5:506–514. https://doi.org/10.1021/acsinfecdis.8b00347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Molecules 21(6):748. https://doi.org/10.3390/molecules21060748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:10478–10486. https://doi.org/10.1021/jp0630626

    Article  CAS  PubMed  Google Scholar 

  17. Navarro-Vázquez A (2015) Beilstein J Org Chem 11:1441–1446. https://doi.org/10.3762/bjoc.11.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oyeneyin OE, Ojo ND, Ipinloju N, James AC, Agbaffa EB (2022) Chem Afr 5:319–332. https://doi.org/10.1007/s42250-021-00304-1

    Article  CAS  Google Scholar 

  19. Ojo ND, Krause RW, Obi-Egbedi NO, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H (2020) (2009) Gaussian 09, R.A. Gaussian Inc., Wall- ingford CT 121:150–166

  20. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) J Comput Aided Mol Des 27:221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  21. Schrödinger (2021) Release 2021-3: LigPrep, Schrödinger. LLC, New York, NY. (n.d.)

    Google Scholar 

  22. Halgren T (2009) J Chem Inf Model 49:377–389. https://doi.org/10.1021/ci800324m

    Article  CAS  PubMed  Google Scholar 

  23. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA (2006) J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  24. Akinyele OF, Adekunle AS, Olayanju DS, Oyeneyin OE, Durodola SS, Ojo ND, Akinmuyisitan AA, Ajayeoba TA, Olasunkanmi LO (2022) J Mol Struc 1268:1–14. https://doi.org/10.1016/j.molstruc.2022.133738

    Article  CAS  Google Scholar 

  25. Oyeneyin O, Akerele D, Ojo N, Oderinlo O (2021) Biointerface Res Appl Chem 11:13968–13981. https://doi.org/10.33263/BRIAC116.1396813981

    Article  CAS  Google Scholar 

  26. Amoko J, Akinyele O, Oyeneyin O, Olayanju D (2021) J Turkish Chem Soc Sect A Chem 8:345–364. https://doi.org/10.18596/jotcsa.821488

    Article  CAS  Google Scholar 

  27. Perez P, Domingo LR, Aizman A, Contreras R (2007) Theor Comp Chem 9:139–201. https://doi.org/10.1016/S1380-7323(07)80010-0

    Article  Google Scholar 

  28. Ojo ND, Krause RW, Obi-Egbedi NO (2020) J Mol Liq 319:1–8. https://doi.org/10.1016/j.molliq.2020.114157

    Article  CAS  Google Scholar 

  29. Obi-Egbedi NO, Ojo ND (2012) Res Chem Intermed 47:5249–5266. https://doi.org/10.1007/s11164-021-04579-4

    Article  CAS  Google Scholar 

  30. Akande AA, Obi-Egbedi NO, Ojo ND (2019) Int J Adv Sci Res Eng 5:102–108. https://doi.org/10.31695/ijasre.2019.33455

    Article  Google Scholar 

  31. Obi-Egbedi NO, Ojo ND (2015) J Sci Res 14:50–56. https://www.researchgate.net/publication/290324946

    Google Scholar 

  32. Aher RB, Roy K (2017) SAR QSAR Environ Res 28(5):390–414. https://doi.org/10.1080/1062936X.2017.1326401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Department of Chemical Sciences, Adekunle Ajasin University, Nigeria and the Department of Chemistry, University of Ibadan, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kola A. Oluwafemi.

Ethics declarations

Declaration of Competing Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oluwafemi, K.A., Oyeneyin, O.E., Ojo, N.D. et al. Alkyne-Allene Transformation: Density Functional and in silico Studies of 5-bromo-1-(Propargyl)-7-azabenzimidazole and its 1,2-propadiene Analogue. Chemistry Africa 6, 1117–1123 (2023). https://doi.org/10.1007/s42250-022-00538-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00538-7

Keywords

Navigation