Skip to main content

Advertisement

Log in

Review of System Integration and Control of Proton Exchange Membrane Fuel Cells

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Proton exchange membrane fuel cells (PEMFCs) as power systems have been widely studied in various application fields because of advantages such as cleanness and high efficiency with great progress having been made in the past decades both technologically and fundamentally. Despite the many promising developments however, technical challenges remain in terms of performance and lifespans. This is because PEMFCs are complex systems composed of various components and factors such as material property, engineering design and operating conditions can interact with each other to affect lifespans and performance. To fully understand the coupling effects of different factors on the overall performance and durability of PEMFCs, this review will comprehensively present existing research based on four aspects, including fuel cell stacks, subsystems, system integration and control strategy optimizations. First, this review will outline fuel cell stacks with their multi-physics modeling and engineering design to provide an understanding of the operating mechanisms inside PEMFC reactors. Following this, the progress of research into the structure and function of each subsystem is summarized and integration schemes for different applications are briefly presented. Finally, various control strategies for individual PEMFC subsystems to optimize energy management and dynamic performance are discussed.

Graphic Abstract

The Proton exchange membrane fuel cell (PEMFC) has been widely studied in various application fields because of its advantages of cleanness and high efficiency as a power system. Great progress has been made in the past decades on both technological and fundamental research of PEMFCs. Despite many promising developments, some technical challenges in performance and lifetimes remain to be overcome. The PEMFC is rather a complex system. It is composed of various parts, and factors like material properties, engineering designs and operating conditions are often interacted with each other and therefore affect its lifetime and performance. In order to fully understand the coupling effects of different factors on the overall performance and durability, this work comprehensively reviews the existing research work from four aspects: the fuel cell stack, the subsystem, the system integration and the optimizing control strategy. Firstly, the fuel cell stack with its multi-physics modeling and engineering design is outlined aimed to understand the operating mechanism inside the reactor. Then the progress of research on the structure and functions of each subsystem is summarized. Furthermore, the integration schemes for different applications are briefly presented. Lastly, various control strategies of each subsystem are introduced in order to optimize the PEMFC’s energy management and its dynamic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright © 2020, Elsevier

Fig. 2

Copyright © 2020, Elsevier

Fig. 3

Copyright © 2020, Elsevier

Fig. 4

Copyright © 2020, Elsevier

Fig. 5

Copyright © 2020, Elsevier

Fig. 6

Copyright © 2020, Elsevier

Fig. 7

Copyright © 2020, Elsevier

Fig. 8

Copyright © 2020, Electrochemical Society

Fig. 9

Copyright © 2020, Elsevier

Fig. 10

Copyright © 2020, Elsevier

Fig. 11

Copyright © 2020, Elsevier

Fig. 12

Copyright © 2020, Elsevier

Fig. 13

Copyright © 2020, Elsevier

Fig. 14

Copyright © 2020, Elsevier

Fig. 15

Copyright © 2020, Elsevier

Fig. 16

Copyright © 2020, Elsevier

Fig. 17

Copyright © 2020, Elsevier

Fig. 18

Copyright © 2020, Elsevier

Fig. 19

Copyright © 2020, Elsevier

Fig. 20

Copyright © 2020, Elsevier

Fig. 21

Copyright © 2020, Elsevier

Fig. 22

Copyright © 2020, Elsevier

Fig. 23

Copyright © 2020, Elsevier

Fig. 24

Copyright © 2020, Elsevier

Fig. 25

Copyright © 2020, Elsevier

Fig. 26

Copyright © 2020, Elsevier

Fig. 27

Copyright © 2020, Elsevier

Fig. 28

Copyright © 2020, Elsevier

Fig. 29
Fig. 30

Copyright © 2020, Elsevier

Fig. 31

Copyright © 2020, Elsevier

Fig. 32

Copyright © 2020, Elsevier

Fig. 33

Copyright © 2020, Elsevier

Fig. 34

Copyright © 2020, Elsevier

Similar content being viewed by others

References

  1. Sharaf, O.Z., Orhan, M.F.: An overview of fuel cell technology: fundamentals and applications. Renew. Sustain. Energy Rev. 32, 810–853 (2014)

    CAS  Google Scholar 

  2. Alaswad, A., Baroutaji, A., Achour, H., et al.: Developments in fuel cell technologies in the transport sector. Int. J. Hydrog. Energy 41, 16499–16508 (2016)

    CAS  Google Scholar 

  3. Das, H.S., Tan, C.W., Yatim, A.H.M.: Fuel cell hybrid electric vehicles: a review on power conditioning units and topologies. Renew. Sustain. Energy Rev. 76, 268–291 (2017)

    Google Scholar 

  4. Das, V., Padmanaban, S., Venkitusamy, K., et al.: Recent advances and challenges of fuel cell based power system architectures and control: a review. Renew. Sustain. Energy Rev. 73, 10–18 (2017)

    CAS  Google Scholar 

  5. Sulaiman, N., Hannan, M.A., Mohamed, A., et al.: A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges. Renew. Sustain. Energy Rev. 52, 802–814 (2015)

    Google Scholar 

  6. Sulaiman, N., Hannan, M.A., Mohamed, A., et al.: Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations. Appl. Energy 228, 2061–2079 (2018)

    Google Scholar 

  7. Bizon, N., Thounthong, P.: Fuel economy using the global optimization of the fuel cell hybrid power systems. Energy Convers. Manag. 173, 665–678 (2018)

    Google Scholar 

  8. Bizon, N., Thounthong, P.: Real-time strategies to optimize the fueling of the fuel cell hybrid power source: a review of issues, challenges and a new approach. Renew. Sustain. Energy Rev. 91, 1089–1102 (2018)

    Google Scholar 

  9. Gong, A., Verstraete, D.: Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: current status and research needs. Int. J. Hydrog. Energy 42, 21311–21333 (2017)

    CAS  Google Scholar 

  10. de Troya, J.J., Álvarez, C., Fernández-Garrido, C., et al.: Analysing the possibilities of using fuel cells in ships. Int. J. Hydrog. Energy 41, 2853–2866 (2016)

    Google Scholar 

  11. Zhan, Y., Wang, H., Zhu, J.: Modelling and control of hybrid UPS system with backup PEM fuel cell/battery. Int. J. Electr. Power 43, 1322–1331 (2012)

    Google Scholar 

  12. Vasallo, M.J., Bravo, J.M., Andújar, J.M.: Optimal sizing for UPS systems based on batteries and/or fuel cell. Appl. Energy 105, 170–181 (2013)

    Google Scholar 

  13. Aamir, M., Ahmed Kalwar, K., Mekhilef, S.: Review: uninterruptible power supply (UPS) system. Renew. Sustain. Energy Rev. 58, 1395–1410 (2016)

    Google Scholar 

  14. Lin, M., Cheng, Y., Lin, M., et al.: Evaluation of PEMFC power systems for UPS base station applications. J. Power Sources 140, 346–349 (2005)

    CAS  Google Scholar 

  15. Adam, A., Fraga, E.S., Brett, D.J.L.: Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration. Appl. Energy 138, 685–694 (2015)

    Google Scholar 

  16. Napoli, R., Gandiglio, M., Lanzini, A., et al.: Techno-economic analysis of PEMFC and SOFC micro-CHP fuel cell systems for the residential sector. Energy Build. 103, 131–146 (2015)

    Google Scholar 

  17. Mehta, V., Cooper, J.S.: Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32–53 (2003)

    CAS  Google Scholar 

  18. Wang, G., Yu, Y., Liu, H., et al.: Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: a review. Fuel Process. Technol. 179, 203–228 (2018)

    CAS  Google Scholar 

  19. Priya, K., Sathishkumar, K., Rajasekar, N.: A comprehensive review on parameter estimation techniques for proton exchange membrane fuel cell modelling. Renew. Sustain. Energy Rev. 93, 121–144 (2018)

    Google Scholar 

  20. Wang, Y., Chen, K.S., Mishler, J., et al.: A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011)

    CAS  Google Scholar 

  21. Kahraman, H., Orhan, M.F.: Flow field bipolar plates in a proton exchange membrane fuel cell: analysis & modeling. Energy Convers. Manag. 133, 363–384 (2017)

    CAS  Google Scholar 

  22. Li, X., Sabir, I.: Review of bipolar plates in PEM fuel cells: flow-field designs. Int. J. Hydrog. Energy 30, 359–371 (2005)

    CAS  Google Scholar 

  23. Antunes, R.A., Oliveira, M.C.L., Ett, G., et al.: Corrosion of metal bipolar plates for PEM fuel cells: a review. Int. J. Hydrog. Energy 35, 3632–3647 (2010)

    CAS  Google Scholar 

  24. Lim, J.W., Lee, D., Kim, M., et al.: Composite structures for proton exchange membrane fuel cells (PEMFC) and energy storage systems (ESS): review. Compos. Struct. 134, 927–949 (2015)

    Google Scholar 

  25. Wang, Y., Ruiz Diaz, D.F., Chen, K.S., et al.: Materials, technological status, and fundamentals of PEM fuel cells: a review. Mater. Today 32, 178–203 (2020)

    CAS  Google Scholar 

  26. Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M.: Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35, 9349–9384 (2010)

    CAS  Google Scholar 

  27. Paul, D., Fraser, A., Pearce, J., et al.: Understanding the Ionomer structure and the proton conduction mechanism in PEFC catalyst layer: adsorbed nafion on model substrate. ECS Trans. 41, 1393–1406 (2011)

    CAS  Google Scholar 

  28. Hickner, M.A., Ghassemi, H., Kim, Y.S., et al.: Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612 (2004)

    CAS  PubMed  Google Scholar 

  29. Mu, S., Xu, C., Yuan, Q., et al.: Degradation behaviors of perfluorosulfonic acid polymer electrolyte membranes for polymer electrolyte membrane fuel cells under varied acceleration conditions. J. Appl. Polym. Sci. 129, 1586–1592 (2013)

    CAS  Google Scholar 

  30. Liu, J., Li, W., Cheng, R., et al.: Stabilizing Pt nanocrystals encapsulated in n-doped carbon as double-active sites for catalyzing oxygen reduction reaction. Langmuir 35, 2580–2586 (2019)

    CAS  PubMed  Google Scholar 

  31. Bao, M., Amiinu, I.S., Peng, T., et al.: Surface evolution of PtCu alloy shell over Pd nanocrystals leads to superior hydrogen evolution and oxygen reduction reactions. ACS Energy Lett. 3, 940–945 (2018)

    CAS  Google Scholar 

  32. Mu, S., Tian, M.: Optimization of perfluorosulfonic acid ionomer loadings in catalyst layers of proton exchange membrane fuel cells. Electrochim. Acta 60, 437–442 (2012)

    CAS  Google Scholar 

  33. Majlan, E.H., Rohendi, D., Daud, W.R.W., et al.: Electrode for proton exchange membrane fuel cells: a review. Renew. Sustain. Energy Rev. 89, 117–134 (2018)

    CAS  Google Scholar 

  34. Manso, A.P., Marzo, F.F., Barranco, J., et al.: Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell: a review. Int. J. Hydrog. Energy 37, 15256–15287 (2012)

    CAS  Google Scholar 

  35. Peng, L., Yi, P., Lai, X.: Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 39, 21127–21153 (2014)

    CAS  Google Scholar 

  36. Song, Y., Zhang, C., Ling, C.Y., et al.: Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell. Int. J. Hydrog. Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.07.231

    Article  Google Scholar 

  37. Wilberforce, T., El Hassan, Z., Ogungbemi, E., et al.: A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells. Renew. Sustain. Energy Rev. 111, 236–260 (2019)

    CAS  Google Scholar 

  38. Hamilton, P.J., Pollet, B.G.: Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation. Fuel Cells 10, 489–509 (2010)

    CAS  Google Scholar 

  39. Bao, Z., Niu, Z., Jiao, K.: Analysis of single- and two-phase flow characteristics of 3-D fine mesh flow field of proton exchange membrane fuel cells. J. Power Sources 438, 226995 (2019)

    CAS  Google Scholar 

  40. Ye, D.H., Zhan, Z.G.: A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells. J. Power Sources 231, 285–292 (2013)

    CAS  Google Scholar 

  41. Liang, P., Qiu, D., Peng, L., et al.: Structure failure of the sealing in the assembly process for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 42, 10217–10227 (2017)

    CAS  Google Scholar 

  42. Jiao, K., Li, X.: Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. 37, 221–291 (2011)

    CAS  Google Scholar 

  43. Larminie, J., Dicks, A.: Fuel Cell Systems Explained, 2nd edn. Wiley, London (2003)

    Google Scholar 

  44. Wang, C.Y.: Fundamental models for fuel cell engineering. Chem. Rev. 104, 4727–4766 (2004)

    CAS  PubMed  Google Scholar 

  45. Weber, A.Z., Newman, J.: Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 104, 4679–4726 (2004)

    CAS  PubMed  Google Scholar 

  46. Anderson, R., Zhang, L., Ding, Y., et al.: A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells. J. Power Sources 195, 4531–4553 (2010)

    CAS  Google Scholar 

  47. Shah, A.A., Luo, K.H., Ralph, T.R., et al.: Recent trends and developments in polymer electrolyte membrane fuel cell modelling. Electrochim. Acta 56, 3731–3757 (2011)

    CAS  Google Scholar 

  48. Asensio, F.J., San Martín, J.I., Zamora, I., et al.: Analysis of electrochemical and thermal models and modeling techniques for polymer electrolyte membrane fuel cells. Renew. Sustain. Energy Rev. 113, 109283 (2019)

    CAS  Google Scholar 

  49. Djilali, N.: Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities. Energy 32, 269–280 (2007)

    CAS  Google Scholar 

  50. Wu, H.-W.: A review of recent development: transport and performance modeling of PEM fuel cells. Appl. Energy 165, 81–106 (2016)

    CAS  Google Scholar 

  51. Rahman, M.A., Mojica, F., Sarker, M., et al.: Development of 1-D multiphysics PEMFC model with dry limiting current experimental validation. Electrochim. Acta 320, 134601 (2019)

    CAS  Google Scholar 

  52. Yin, Y., Wang, X., Shangguan, X., et al.: Numerical investigation on the characteristics of mass transport and performance of PEMFC with baffle plates installed in the flow channel. Int. J. Hydrog. Energy 43, 8048–8062 (2018)

    CAS  Google Scholar 

  53. Amirfazli, A., Asghari, S., Sarraf, M.: An investigation into the effect of manifold geometry on uniformity of temperature distribution in a PEMFC stack. Energy 145, 141–151 (2018)

    Google Scholar 

  54. Abdollahzadeh, M., Ribeirinha, P., Boaventura, M., et al.: Three-dimensional modeling of PEMFC with contaminated anode fuel. Energy 152, 939–959 (2018)

    CAS  Google Scholar 

  55. Carton, J.G., Olabi, A.G.: Three-dimensional proton exchange membrane fuel cell model: comparison of double channel and open pore cellular foam flow plates. Energy 136, 185–195 (2017)

    CAS  Google Scholar 

  56. Bednarek, T., Tsotridis, G.: Issues associated with modelling of proton exchange membrane fuel cell by computational fluid dynamics. J. Power Sources 343, 550–563 (2017)

    CAS  Google Scholar 

  57. Rahimi-Esbo, M., Ranjbar, A.A., Ramiar, A., et al.: Improving PEM fuel cell performance and effective water removal by using a novel gas flow field. Int. J. Hydrog. Energy 41, 3023–3037 (2016)

    CAS  Google Scholar 

  58. Ghanbarian, A., Kermani, M.J.: Enhancement of PEM fuel cell performance by flow channel indentation. Energy Convers. Manag. 110, 356–366 (2016)

    CAS  Google Scholar 

  59. Chaudhary, S., Sachan, V.K., Bhattacharya, P.K.: Two dimensional modelling of water uptake in proton exchange membrane fuel cell. Int. J. Hydrog. Energy 39, 17802–17818 (2014)

    CAS  Google Scholar 

  60. Amirfazli, A., Asghari, S., Koosha, M.: Mathematical modeling and simulation of thermal management in polymer electrolyte membrane fuel cell stacks. J. Power Sources 268, 533–545 (2014)

    CAS  Google Scholar 

  61. Wong, K.H., Loo, K.H., Lai, Y.M., et al.: A theoretical study of inlet relative humidity control in PEM fuel cell. Int. J. Hydrog. Energy 36, 11871–11885 (2011)

    CAS  Google Scholar 

  62. Baek, S.M., Yu, S.H., Nam, J.H., et al.: A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs. Appl. Therm. Eng. 31, 1427–1434 (2011)

    Google Scholar 

  63. Akhtar, N., Kerkhof, P.J.A.M.: Effect of channel and rib width on transport phenomena within the cathode of a proton exchange membrane fuel cell. Int. J. Hydrog. Energy 36, 5536–5549 (2011)

    CAS  Google Scholar 

  64. Shah, A.A., Kim, G.S., Sui, P.C., et al.: Transient non-isothermal model of a polymer electrolyte fuel cell. J. Power Sources 163, 793–806 (2007)

    CAS  Google Scholar 

  65. Meng, H., Wang, C.Y.: Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells. J. Electrochem. Soc. 152, A1733–A1741 (2005)

    CAS  Google Scholar 

  66. Ju, H., Meng, H., Wang, C.Y.: A single-phase, non-isothermal model for PEM fuel cells. Int. J. Heat Mass Transf. 48, 1303–1315 (2005)

    CAS  Google Scholar 

  67. Jiang, Y., Yang, Z., Jiao, K., et al.: Sensitivity analysis of uncertain parameters based on an improved proton exchange membrane fuel cell analytical model. Energy Convers. Manag. 164, 639–654 (2018)

    CAS  Google Scholar 

  68. Xing, L., Liu, X., Alaje, T., et al.: A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell. Energy 73, 618–634 (2014)

    CAS  Google Scholar 

  69. Xing, L., Das, P.K., Song, X., et al.: Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity. Appl. Energy 138, 242–257 (2015)

    CAS  Google Scholar 

  70. Yin, C., Gao, Y., Li, T., et al.: Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model. Renew. Energy 147, 650–662 (2020)

    CAS  Google Scholar 

  71. Yin, C., Gao, J., Wen, X., et al.: In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model. Energy 113, 1071–1089 (2016)

    CAS  Google Scholar 

  72. Shimpalee, S., Hirano, S., DeBolt, M., et al.: Macro-scale analysis of large scale PEM fuel cell flow-fields for automotive applications. J. Electrochem. Soc. 164, E3073–E3080 (2017)

    CAS  Google Scholar 

  73. Zhang, G., Xie, X., Xie, B., et al.: Large-scale multi-phase simulation of proton exchange membrane fuel cell. Int. J. Heat Mass Transf. 130, 555–563 (2019)

    CAS  Google Scholar 

  74. Konno, N., Mizuno, S., Nakaji, H., et al.: Development of compact and high-performance fuel cell stack. SAE In. J. Altern. Powertrains 4, 123–129 (2015)

    Google Scholar 

  75. Nakagaki, N.: The Newly Developed Components for the Fuel Cell Vehicle, Mirai. SAE Technical Paper, 1–5 (2015)

  76. Zhang, G., Xie, B., Bao, Z., et al.: Multi-phase simulation of proton exchange membrane fuel cell with 3D fine mesh flow field. Int. J. Energy Res. 42, 4697–4709 (2018)

    CAS  Google Scholar 

  77. Zhang, G., Yuan, H., Wang, Y., et al.: Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model. Appl. Energy 255, 113865 (2019)

    CAS  Google Scholar 

  78. Morikawa, H., Kikuchi, H., Saito, N.: Development and advances of a V-flow FC stack for FCX clarity. SAE Int. J. Engines 2, 955–959 (2009)

    Google Scholar 

  79. Zhang, G., Jiao, K.: Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian–Eulerian model and two-fluid model. Energy Convers. Manag. 176, 409–421 (2018)

    CAS  Google Scholar 

  80. Anyanwu, I.S., Hou, Y., Xi, F., et al.: Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC. Int. J. Hydrog. Energy 44, 13807–13819 (2019)

    CAS  Google Scholar 

  81. Wan, Y., Guan, J., Xu, S.: Improved empirical parameters design method for centrifugal compressor in PEM fuel cell vehicle application. Int. J. Hydrog. Energy 42, 5590–5605 (2017)

    CAS  Google Scholar 

  82. Ahluwalia, R.K., Wang, X., Kwon, J., et al.: Performance and cost of automotive fuel cell systems with ultra-low platinum loadings. J. Power Sources 196, 4619–4630 (2011)

    CAS  Google Scholar 

  83. Chen, H., Song, Z., Zhao, X., et al.: A review of durability test protocols of the proton exchange membrane fuel cells for vehicle. Appl. Energy 224, 289–299 (2018)

    Google Scholar 

  84. Wang, J.: System integration, durability and reliability of fuel cells: challenges and solutions. Appl. Energy 189, 460–479 (2017)

    CAS  Google Scholar 

  85. Iranzo, A., Boillat, P., Biesdorf, J., et al.: Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: effects of reactants relative humidity, current density, and cathode stoichiometry. Energy 82, 914–921 (2015)

    CAS  Google Scholar 

  86. Machado, B.S., Chakraborty, N., Das, P.K.: Influences of flow direction, temperature and relative humidity on the performance of a representative anion exchange membrane fuel cell: a computational analysis. Int. J. Hydrog. Energy 42, 6310–6323 (2017)

    CAS  Google Scholar 

  87. Takalloo, P.K., Nia, E.S., Ghazikhani, M.: Numerical and experimental investigation on effects of inlet humidity and fuel flow rate and oxidant on the performance on polymer fuel cell. Energy Convers. Manag. 114, 290–302 (2016)

    CAS  Google Scholar 

  88. Rupak, B., Satish, G.K.: Experimental investigation of two-phaseflow pressure droptransients in polymer electrolyte membrane fuel cell reactantchannels and their impact on the cell performance. J. Power Sources 268, 194–203 (2014)

    Google Scholar 

  89. Dillet, J., Spernjak, D., Lamibrac, A., et al.: Impact of flow rates and electrode specifications on degradations during repeated startups and shutdowns in polymer-electrolyte membrane fuel cells. J. Power Sources 250, 68–79 (2014)

    CAS  Google Scholar 

  90. Qin, Y., Du, Q., Fan, M., et al.: Study on the operating pressure effect on the performance of a proton exchange membrane fuel cell power system. Energy Convers. Manag. 142, 357–365 (2017)

    Google Scholar 

  91. Ko, D., Doh, S., Park, H.S., et al.: Investigation of the effect of operating pressure on the performance of proton exchange membrane fuel cell: In the aspect of water distribution. Renew. Energy 115, 896–907 (2018)

    CAS  Google Scholar 

  92. Ashorynejad, H.R., Javaherdeh, K., Van den Akker, H.E.A.: The effect of pulsating pressure on the performance of a PEM fuel cell with a wavy cathode surface. Int. J. Hydrog. Energy 41, 14239–14251 (2016)

    CAS  Google Scholar 

  93. Cai, C., Rao, Y., Zhang, Y., et al.: Failure mechanism of PEM fuel cell under high back pressures operation. Int. J. Hydrog. Energy 44, 13786–13793 (2019)

    CAS  Google Scholar 

  94. Yang, Y., Zhang, X., Guo, L., et al.: Degradation mitigation effects of pressure swing in proton exchange membrane fuel cells with dead-ended anode. Int. J. Hydrog. Energy 42, 24435–24447 (2017)

    CAS  Google Scholar 

  95. Xing, L., Cai, Q., Xu, C., et al.: Numerical study of the effect of relative humidity and stoichiometric flow ratio on PEM (proton exchange membrane) fuel cell performance with various channel lengths: an anode partial flooding modelling. Energy 106, 631–645 (2016)

    CAS  Google Scholar 

  96. Chang, Y., Liu, J., Li, R., et al.: Effect of humidity and thermal cycling on the catalyst layer structural changes in polymer electrolyte membrane fuel cells. Energy Convers. Manag. 189, 24–32 (2019)

    CAS  Google Scholar 

  97. Haghayegh, M., Eikani, M.H., Rowshanzamir, S.: Modeling and simulation of a proton exchange membrane fuel cell using computational fluid dynamics. Int. J. Hydrog. Energy 42, 21944–21954 (2017)

    CAS  Google Scholar 

  98. Gonzatti, F., Miotto, M., Farret, F.A.: Proposal for automation and control of a PEM fuel cell stack. J. Control. Autom. Electr. Syst. 28, 493–501 (2017)

    Google Scholar 

  99. Akitomo, F., Sasabe, T., Yoshida, T., et al.: Investigation of effects of high temperature and pressure on a polymer electrolyte fuel cell with polarization analysis and X-ray imaging of liquid water. J. Power Sources 431, 205–209 (2019)

    CAS  Google Scholar 

  100. Zhang, C., Zhou, W., Ehteshami, M.M., et al.: Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation. Energy Convers. Manag. 105, 433–441 (2015)

    CAS  Google Scholar 

  101. Hwang, J.J.: Effect of hydrogen delivery schemes on fuel cell efficiency. J. Power Sources 239, 54–63 (2013)

    CAS  Google Scholar 

  102. Bao, C., Ouyang, M., Yi, B.: Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system—I Control-oriented modeling. Int. J. Hydrog. Energy 31, 1879–1896 (2006)

    CAS  Google Scholar 

  103. Bao, C., Ouyang, M., Yi, B.: Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system—II. Linear and adaptive nonlinear control. Int. J. Hydrog. Energy 31, 1897–1913 (2006)

    CAS  Google Scholar 

  104. He, J., Ahn, J., Choe, S.Y.: Analysis and control of a fuel delivery system considering a two-phase anode model of the polymer electrolyte membrane fuel cell stack. J. Power Sources 196, 4655–4670 (2011)

    CAS  Google Scholar 

  105. Chen, Y.S., Yang, C.W., Lee, J.Y.: Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration. Appl. Energy 113, 1519–1524 (2014)

    CAS  Google Scholar 

  106. Rabbani, A., Rokni, M.: Effect of nitrogen crossover on purging strategy in PEM fuel cell systems. Appl. Energy 111, 1061–1070 (2013)

    CAS  Google Scholar 

  107. Promislow, K., St-Pierre, J., Wetton, B.: A simple, analytic model of polymer electrolyte membrane fuel cell anode recirculation at operating power including nitrogen crossover. J. Power Sources 196, 10050–10056 (2011)

    CAS  Google Scholar 

  108. Belvedere, B., Bianchi, M., Borghetti, A., et al.: Experimental analysis of a PEM fuel cell performance at variable load with anodic exhaust management optimization. Int. J. Hydrog. Energy 38, 385–393 (2013)

    CAS  Google Scholar 

  109. Chen, J., Siegel, J.B., Stefanopoulou, A.G., et al.: Optimization of purge cycle for dead-ended anode fuel cell operation. Int. J. Hydrog. Energy 38, 5092–5105 (2013)

    CAS  Google Scholar 

  110. Mokmeli, A., Asghari, S.: An investigation into the effect of anode purging on the fuel cell performance. Int. J. Hydrog. Energy 35, 9276–9282 (2010)

    CAS  Google Scholar 

  111. He, J., Choe, S.Y., Hong, C.-O.: Analysis and control of a hybrid fuel delivery system for a polymer electrolyte membrane fuel cell. J. Power Sources 185, 973–984 (2008)

    CAS  Google Scholar 

  112. Zhang, Y., Bao, P., Wan, Y., et al.: Modeling and analysis of air supply system of polymer electrolyte membrane fuel cell system. Energy Procedia 142, 1053–1058 (2017)

    CAS  Google Scholar 

  113. Beirami, H., Shabestari, A.Z., Zerafat, M.M.: Optimal PID plus fuzzy controller design for a PEM fuel cell air feed system using the self-adaptive differential evolution algorithm. Int. J. Hydrog. Energy 40, 9422–9434 (2015)

    CAS  Google Scholar 

  114. Chen, J., Liu, Z., Wang, F., et al.: Optimal oxygen excess ratio control for PEM fuel cells. IEEE Trans. Contr. Syst. T. 26, 1711–1721 (2018)

    Google Scholar 

  115. Kim, B., Cha, D., Kim, Y.: The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions. Appl. Energy 138, 143–149 (2015)

    Google Scholar 

  116. Liu, J., Gao, Y., Su, X., et al.: Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique. IEEE Trans. Contr. Syst. Trans. 27, 1129–1138 (2019)

    Google Scholar 

  117. Matraji, I., Ahmed, F.S., Laghrouche, S., et al.: Comparison of robust and adaptive second order sliding mode control in PEMFC air-feed systems. Int. J. Hydrog. Energy 40, 9491–9504 (2015)

    CAS  Google Scholar 

  118. Matraji, I., Laghrouche, S., Jemei, S., et al.: Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Appl. Energy 104, 945–957 (2013)

    CAS  Google Scholar 

  119. Pilloni, A., Pisano, A., Usai, E.: Observer-based air excess ratio control of a PEM fuel cell system via high-order sliding mode. IEEE Trans. Ind. Electron. 62, 5236–5246 (2015)

    Google Scholar 

  120. Sun, L., Shen, J., Hua, Q., et al.: Data-driven oxygen excess ratio control for proton exchange membrane fuel cell. Appl. Energy 231, 866–875 (2018)

    CAS  Google Scholar 

  121. Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H.: Control of fuel cell breathing. IEEE Trans. Energy Conver. 24, 30–46 (2004)

    Google Scholar 

  122. Zhao, D., Zheng, Q., Gao, F., et al.: Disturbance decoupling control of an ultra-high speed centrifugal compressor for the air management of fuel cell systems. Int. J. Hydrog. Energy 39, 1788–1798 (2014)

    CAS  Google Scholar 

  123. Zheng, Q., Gao, Z.: Active disturbance rejection control: some recent experimental and industrial case studies. Control Theory Technol. 16, 301–313 (2018)

    Google Scholar 

  124. Jinyang, L., Xiaofeng, M.: Temperature decoupling control of double-level air flow field dynamic vacuum system based on neural network and prediction principle. Eng. Appl. Artif. Intel. 26, 1237–1245 (2013)

    Google Scholar 

  125. Cheng, S., Fang, C., Xu, L., et al.: Model-based temperature regulation of a PEM fuel cell system on a city bus. Int. J. Hydrog. Energy 40, 13566–13575 (2015)

    CAS  Google Scholar 

  126. Strahl, S., Husar, A., Puleston, P., et al.: Performance improvement by temperature control of an open-cathode PEM fuel cell system. Fuel Cells 14, 466–478 (2014)

    CAS  Google Scholar 

  127. Yang, L., Karnik, A., Pence, B., et al: Fuel cell thermal management: modeling, specifications and correct-by-construction control synthesis. In: IEEE 2017 American Control Conference, pp. 1839–1846 (2017)

  128. Rojas, J.D., Kunusch, C., Ocampo-Martinez, C., et al.: control-oriented thermal modeling methodology for water-cooled PEM fuel-cell-based systems. IEEE Trans. Ind. Electron. 62, 5146–5154 (2015)

    Google Scholar 

  129. Li, X., Deng, Z.H., Wei, D., et al.: Novel variable structure control for the temperature of PEM fuel cell stack based on the dynamic thermal affine model. Energy Convers. Manag. 52, 3265–3274 (2011)

    CAS  Google Scholar 

  130. Han, J., Yu, S., Yi, S.: Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm. Int. J. Hydrog. Energy 42, 4328–4341 (2017)

    CAS  Google Scholar 

  131. Liso, V., Nielsen, M.P., Kær, S.K., et al.: Thermal modeling and temperature control of a PEM fuel cell system for forklift applications. Int. J. Hydrog. Energy 39, 8410–8420 (2014)

    CAS  Google Scholar 

  132. Saygili, Y., Eroglu, I., Kincal, S.: Model based temperature controller development for water cooled PEM fuel cell systems. Int. J. Hydrog. Energy 40, 615–622 (2015)

    CAS  Google Scholar 

  133. Headley, A.J., Chen, D.: Critical control volume sizing for improved transient thermal modeling of PEM fuel cells. Int. J. Hydrog. Energy 40, 7762–7768 (2015)

    CAS  Google Scholar 

  134. Hwang, J.J.: Thermal control and performance assessment of a proton exchanger membrane fuel cell generator. Appl. Energy 108, 184–193 (2013)

    CAS  Google Scholar 

  135. Hasani, M., Rahbar, N.: Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell: an experimental study. Int. J. Hydrog. Energy 40, 15040–15051 (2015)

    CAS  Google Scholar 

  136. Chen, D., Li, W., Peng, H.: An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control. J. Power Sources 180, 461–467 (2008)

    CAS  Google Scholar 

  137. Chen, D., Peng, H.: A thermodynamic model of membrane humidifiers for PEM fuel cell humidification control. J. Dyn. Syst. Meas. Control 127, 424–432 (2004)

    Google Scholar 

  138. Park, S., Choe, S., Choi, S.: Dynamic modeling and analysis of a shell-and-tube type gas-to-gas membrane humidifier for PEM fuel cell applications. Int. J. Hydrog. Energy 33, 2273–2282 (2008)

    CAS  Google Scholar 

  139. Liu, Z., Chen, J., Chen, S., et al.: Modeling and control of cathode air humidity for pem fuel cell systems. IFAC-PapersOnLine 50, 4751–4756 (2017)

    Google Scholar 

  140. Solsona, M., Kunusch, C., Ocampo-Martinez, C.: Control-oriented model of a membrane humidifier for fuel cell applications. Energy Convers. Manag. 137, 121–129 (2017)

    Google Scholar 

  141. Chen, C.Y., Yan, W.M., Lai, C.N., et al.: Heat and mass transfer of a planar membrane humidifier for proton exchange membrane fuel cell. Int. J. Heat Mass Transf. 109, 601–608 (2017)

    Google Scholar 

  142. Cahalan, T., Rehfeldt, S., Bauer, M., et al.: Experimental set-up for analysis of membranes used in external membrane humidification of PEM fuel cells. Int. J. Hydrog. Energy 41, 13666–13677 (2016)

    CAS  Google Scholar 

  143. Renouard-Vallet, G., Saballus, M., Schumann, P., et al.: Fuel cells for civil aircraft application: on-board production of power, water and inert gas. Chem. Eng. Res. Des. 90, 3–10 (2012)

    CAS  Google Scholar 

  144. Kim, T., Kwon, S.: Design and development of a fuel cell-powered small unmanned aircraft. Int. J. Hydrog. Energy 37, 615–622 (2012)

    CAS  Google Scholar 

  145. Guida, D., Minutillo, M.: Design methodology for a PEM fuel cell power system in a more electrical aircraft. Appl. Energy 192, 446–456 (2017)

    CAS  Google Scholar 

  146. Okumus, E., Boyaci San, F.G., Okur, O., et al.: Development of boron-based hydrogen and fuel cell system for small unmanned aerial vehicle. Int. J. Hydrog. Energy 42, 2691–2697 (2017)

    CAS  Google Scholar 

  147. Shih, N.C., Weng, B.J., Lee, J.Y., et al.: Development of a 20 kW generic hybrid fuel cell power system for small ships and underwater vehicles. Int. J. Hydrog. Energy 39, 13894–13901 (2014)

    CAS  Google Scholar 

  148. Mendez, A., Leo, T., Herreros, M.: Current state of technology of fuel cell power systems for autonomous underwater vehicles. Energies 7, 4676–4693 (2014)

    Google Scholar 

  149. Chang, H., Xu, X., Shen, J., et al.: Performance analysis of a micro-combined heating and power system with PEM fuel cell as a prime mover for a typical household in North China. Int. J. Hydrog. Energy 44, 24965–24976 (2019)

    CAS  Google Scholar 

  150. Zhang, Y., Zhou, B.: Modeling and control of a portable proton exchange membrane fuel cell–battery power system. J. Power Sources 196, 8413–8423 (2011)

    CAS  Google Scholar 

  151. Oszcipok, M., Zedda, M., Hesselmann, J., et al.: Portable proton exchange membrane fuel-cell systems for outdoor applications. J. Power Sources 157, 666–673 (2006)

    CAS  Google Scholar 

  152. Gang, B.G., Kwon, S.: All-in-one portable electric power plant using proton exchange membrane fuel cells for mobile applications. Int. J. Hydrog. Energy 43, 6331–6339 (2018)

    CAS  Google Scholar 

  153. Chackoa, C., Ramasamya, R., Kim, S., et al.: Characteristic behavior of polymer electrolyte fuel cell resistance during cold start. J. Electrochem. Soc. 155, B1145–B1154 (2008)

    Google Scholar 

  154. Tabe, Y., Saito, M., Fukui, K., et al.: Cold start characteristics and freezing mechanism dependence on start-up temperature in a polymer electrolyte membrane fuel cell. J. Power Sources 208, 366–373 (2012)

    CAS  Google Scholar 

  155. Luo, Y., Jiao, K., Jia, B.: Elucidating the constant power, current and voltage cold start modes of proton exchange membrane fuel cell. Int. J. Heat Mass Transf. 77, 489–500 (2014)

    Google Scholar 

  156. Amamou, A.A., Kelouwani, S., Boulon, L., et al.: A comprehensive review of solutions and strategies for cold start of automotive proton exchange membrane fuel cells. IEEE Access 4, 4989–5002 (2016)

    Google Scholar 

  157. Sasmito, A.P., Shamim, T., Mujumdar, A.S.: Passive thermal management for PEM fuel cell stack under cold weather condition using phase change materials (PCM). Appl. Therm. Eng. 58, 615–625 (2013)

    Google Scholar 

  158. Abdul Rasheed, R.K., Ehteshami, S.M.M., Chan, S.H.: Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process. Int. J. Hydrog. Energy 39, 2246–2260 (2014)

    CAS  Google Scholar 

  159. Kannan, A., Kabza, A., Scholta, J.: Long term testing of start–stop cycles on high temperature PEM fuel cell stack. J. Power Sources 277, 312–316 (2015)

    CAS  Google Scholar 

  160. Meng, H.: A PEM fuel cell model for cold-start simulations. J. Power Sources 178, 141–150 (2008)

    CAS  Google Scholar 

  161. Sinha, P.K., Wang, C.Y.: Two-phase modeling of gas purge in a polymer electrolyte fuel cell. J. Power Sources 183, 609–618 (2008)

    CAS  Google Scholar 

  162. Sun, S., Yu, H., Hou, J., et al.: Catalytic hydrogen/oxygen reaction assisted the proton exchange membrane fuel cell (PEMFC) startup at subzero temperature. J. Power Sources 177, 137–141 (2008)

    CAS  Google Scholar 

  163. Du, Q., Jia, B., Luo, Y., et al.: Maximum power cold start mode of proton exchange membrane fuel cell. Int. J. Hydrog. Energy 39, 8390–8400 (2014)

    CAS  Google Scholar 

  164. Jiang, F., Wang, C.-Y., Chen, K.S.: Current ramping: a strategy for rapid start-up of PEMFCs from subfreezing environment. J. Electrochem. Soc. 157, B342–B347 (2010)

    CAS  Google Scholar 

  165. Lin, R., Weng, Y., Lin, X., et al.: Rapid cold start of proton exchange membrane fuel cells by the printed circuit board technology. Int. J. Hydrog. Energy 39, 18369–18378 (2014)

    CAS  Google Scholar 

  166. Henao, N., Kelouwani, S., Agbossou, K., et al.: Proton exchange membrane fuel cells cold startup global strategy for fuel cell plug-in hybrid electric vehicle. J. Power Sources 220, 31–41 (2012)

    CAS  Google Scholar 

  167. Zhou, Y., Luo, Y., Yu, S., et al.: Modeling of cold start processes and performance optimization for proton exchange membrane fuel cell stacks. J. Power Sources 247, 738–748 (2014)

    CAS  Google Scholar 

  168. Ziogou, C., Papadopoulou, S., Georgiadis, M.C., et al.: On-line nonlinear model predictive control of a PEM fuel cell system. J. Process Control 23, 483–492 (2013)

    CAS  Google Scholar 

  169. Qi, Z., Tang, H., Guo, Q., et al.: Investigation on “saw-tooth” behavior of PEM fuel cell performance during shutdown and restart cycles. J. Power Sources 161, 864–871 (2006)

    CAS  Google Scholar 

  170. Zhang, T., Wang, P., Chen, H., et al.: A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Appl. Energy 223, 249–262 (2018)

    Google Scholar 

  171. Varigonda, S., Kamat, M.: Control of stationary and transportation fuel cell systems: progress and opportunities. Comput. Chem. Eng. 30, 1735–1748 (2006)

    CAS  Google Scholar 

  172. Baillet, R., Reiser, C.: System and method for shutting down a fuel cell power plant. US Patent (2004)

  173. Segura, F., Andújar, J.M.: Step by step development of a real fuel cell system: design, implementation, control and monitoring. Int. J. Hydrog. Energy 40, 5496–5508 (2015)

    CAS  Google Scholar 

  174. Kim, J.H., Cho, E.A., Jang, J.H., et al.: Development of a durable PEMFC startup process by applying a dummy load. J. Electrochem. Soc. 156, B955–B961 (2009)

    CAS  Google Scholar 

  175. Shen, Q., Hou, M., Liang, D., et al.: Study on the processes of start-up and shutdown in proton exchange membrane fuel cells. J. Power Sources 189, 1114–1119 (2009)

    CAS  Google Scholar 

  176. Coddet, P., Pera, M.C., Candusso, D., et al: Study of proton exchange membrane fuel cell safety procedures in case of emergency shutdown. In: 2007 IEEE International Symposium on Industrial Electronics, Vigo, pp. 725–730 (2007)

  177. Zhang, Q., Lin, R., Cui, X., et al.: Study of the two-phase dummy load shut-down strategy for proton exchange membrane fuel cells. J. Power Sources 341, 230–239 (2017)

    CAS  Google Scholar 

  178. Kolli, A., Gaillard, A., De Bernardinis, A., et al.: A review on DC/DC converter architectures for power fuel cell applications. Energy Convers. Manag. 105, 716–730 (2015)

    Google Scholar 

  179. Rezazadeh, A., Askarzadeh, A., Sedighizadeh, M.: Adaptive inverse control of proton exchange membrane fuel cell using RBF neural network. Int. J. Electrochem. Sci. 6, 3105–3117 (2011)

    CAS  Google Scholar 

  180. M. Safwat, I., Wu, X., Zhao, X., et al: Adaptive fuzzy logic control of boost converter fed by stand-alone PEM fuel cell stack. In: 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 1–6 (2017)

  181. Chen, F.X., Yu, Y., Chen, J.X.: Control system design of power tracking for pem fuel cell automotive application. Fuel Cells 17, 671–681 (2017)

    CAS  Google Scholar 

  182. Ziogou, C., Voutetakis, S., Georgiadis, M.C., et al.: Model predictive control (MPC) strategies for PEM fuel cell systems: a comparative experimental demonstration. Chem. Eng. Res. Des. 131, 656–670 (2018)

    CAS  Google Scholar 

  183. Garcia, P., Fernández, L.M., Garcia, C.A., et al.: Comparative study of PEM fuel cell models for integration in propulsion systems of urban public transport. Fuel Cells 10, 1024–1039 (2010)

    CAS  Google Scholar 

  184. Al-Durra, A., Yurkovich, S., Guezennec, Y.: Study of nonlinear control schemes for an automotive traction PEM fuel cell system. Int. J. Hydrog. Energy 35, 11291–11307 (2010)

    CAS  Google Scholar 

  185. Damour, C., Benne, M., Kadjo, J.J.A., et al.: On-line PEMFC control using parameterized nonlinear model-based predictive control. Fuel Cells 14, 886–893 (2014)

    CAS  Google Scholar 

  186. Li, D., Yu, Y., Jin, Q., et al.: Maximum power efficiency operation and generalized predictive control of PEM (proton exchange membrane) fuel cell. Energy 68, 210–217 (2014)

    CAS  Google Scholar 

  187. Abdi, S., Afshar, K., Bigdeli, N., et al.: A novel approach for robust maximum power point tracking of PEM fuel cell generator using sliding mode control approach. Int J. Electrochem. Sci. 7, 4192–4209 (2012)

    CAS  Google Scholar 

  188. Zhong, Z., Huo, H., Zhu, X., et al.: Adaptive maximum power point tracking control of fuel cell power plants. J. Power Sources 176, 259–269 (2008)

    CAS  Google Scholar 

  189. Derbeli, M., Barambones, O., Sbita, L.: A robust maximum power point tracking control method for a PEM fuel cell power system. Appl. Sci. 8, 2449 (2018)

    CAS  Google Scholar 

  190. Romdlony, M.Z., Trilaksono, B.R., Ortega, R.: Experimental study of extremum seeking control for maximum power point tracking of PEM fuel cell. In: 2012 International Conference on System Engineering and Technology (ICSET), pp. 1–6 (2012)

  191. Wang, M.H., Huang, M.L., Jiang, W.J., et al.: Maximum power point tracking control method for proton exchange membrane fuel cell. IET Renew. Power Gen. 10, 908–915 (2016)

    Google Scholar 

  192. Bankupalli, P.T., Ghosh, S., Kumar, L., et al.: A non-iterative approach for maximum power extraction from PEM fuel cell using resistance estimation. Energy Convers. Manag. 187, 565–577 (2019)

    Google Scholar 

  193. Yousfi-Steiner, N., Moçotéguy, P., Candusso, D., et al.: A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: causes, consequences and diagnostic for mitigation. J. Power Sources 194, 130–145 (2009)

    CAS  Google Scholar 

  194. Dalvi, A., Guay, M.: Control and real-time optimization of an automotive hybrid fuel cell power system. Control Eng. Pract. 17, 924–938 (2009)

    Google Scholar 

  195. Daud, W.R.W., Rosli, R.E., Majlan, E.H., et al.: PEM fuel cell system control: a review. Renew. Energy 113, 620–638 (2017)

    CAS  Google Scholar 

  196. Woo, C.H., Benziger, J.B.: PEM fuel cell current regulation by fuel feed control. Chem. Eng. Sci. 62, 957–968 (2007)

    CAS  Google Scholar 

  197. Serra, M., Aguado, J., Ansede, X., et al.: Controllability analysis of decentralised linear controllers for polymeric fuel cells. J. Power Sources 151, 93–102 (2005)

    CAS  Google Scholar 

  198. Pukrushpan, J.T., Stefanopoulou, A.G., Varigonda, S., et al.: Control of natural gas catalytic partial oxidation for hydrogen generation in fuel cell applications. IEEE Trans. Contr. Syst. Trans. 13, 3–14 (2005)

    Google Scholar 

  199. Garcia-Gabin, W., Dorado, F., Bordons, C.: Real-time implementation of a sliding mode controller for air supply on a PEM fuel cell. J. Process Control 20, 325–336 (2010)

    CAS  Google Scholar 

  200. Williams, J.G., Liu, G.P., Thanapalan, K., et al.: Design and implementation of on-line self-tuning control for PEM fuel cells. World Electr. Veh. J. 2, 242–252 (2008)

    Google Scholar 

  201. Zhang, J., Liu, G., Yu, W., et al.: Adaptive control of the airflow of a PEM fuel cell system. J. Power Sources 179, 649–659 (2008)

    CAS  Google Scholar 

  202. Ou, K., Wang, Y.X., Li, Z.-Z., et al.: Feedforward fuzzy-PID control for air flow regulation of PEM fuel cell system. Int. J. Hydrog. Energy 40, 11686–11695 (2015)

    CAS  Google Scholar 

  203. Hähnel, C., Cloppenborg, A., Horn, J.: Offset-free nonlinear model predictive control of electrical power of a PEM fuel cell system using an Extended Kalman Filter. In: 2016 24th Mediterranean Conference on Control and Automation (MED), pp. 106–111 (2016)

  204. Damour, C., Benne, M., Lebreton, C., et al.: Real-time implementation of a neural model-based self-tuning PID strategy for oxygen stoichiometry control in PEM fuel cell. Int. J. Hydrog. Energy 39, 12819–12825 (2014)

    CAS  Google Scholar 

  205. Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H.: Control of Fuel Cell Power Systems: Principles. Modeling and Analysis and Feedback Design. Springer, Berlin (2004)

    Google Scholar 

  206. Tekin, M., Hissel, D., Pera, M.C., et al.: Energy consumption reduction of a PEM fuel cell motor-compressor group thanks to efficient control laws. J. Power Sources 156, 57–63 (2006)

    CAS  Google Scholar 

  207. Golbert, J., Lewin, D.R.: Fuel efficient model predictive control of PEM fuel cells. IFAC Proc. Vol. 38, 357–362 (2005)

    Google Scholar 

  208. Harrag, A., Bahri, H.: Novel neural network IC-based variable step size fuel cell MPPT controller. Int. J. Hydrog. Energy 42, 3549–3563 (2017)

    CAS  Google Scholar 

  209. Kaya, K., Hames, Y.: Two new control strategies: For hydrogen fuel saving and extend the life cycle in the hydrogen fuel cell vehicles. Int. J. Hydrog. Energy 44, 18967–18980 (2019)

    CAS  Google Scholar 

  210. Kim, J., Kim, M., Kang, T., et al.: Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells. Energy 66, 41–49 (2014)

    CAS  Google Scholar 

  211. Hinaje, M., Raël, S., Caron, J.P., et al.: An innovating application of PEM fuel cell: current source controlled by hydrogen supply. Int. J. Hydrog. Energy 37, 12481–12488 (2012)

    CAS  Google Scholar 

  212. Abbaspour, A., Khalilnejad, A., Chen, Z.: Robust adaptive neural network control for PEM fuel cell. Int. J. Hydrog. Energy 41, 20385–20395 (2016)

    CAS  Google Scholar 

  213. Migliardini, F., Capasso, C., Corbo, P.: Optimization of hydrogen feeding procedure in PEM fuel cell systems for transportation. Int. J. Hydrog. Energy 39, 21746–21752 (2014)

    CAS  Google Scholar 

  214. Talj, R., Ortega, R., Astolfi, A.: Passivity and robust PI control of the air supply system of a PEM fuel cell model. Automatica 47, 2554–2561 (2011)

    Google Scholar 

  215. Baroud, Z., Benmiloud, M., Benalia, A., et al.: Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems. Int. J. Hydrog. Energy 42, 10435–10447 (2017)

    CAS  Google Scholar 

  216. Fang, C., Xu, L., Cheng, S., et al.: Sliding-mode-based temperature regulation of a proton exchange membrane fuel cell test bench. Int. J. Hydrog. Energy 42, 11745–11757 (2017)

    CAS  Google Scholar 

  217. Ou, K., Yuan, W.W., Choi, M., et al.: Performance increase for an open-cathode PEM fuel cell with humidity and temperature control. Int. J. Hydrog. Energy 42, 29852–29862 (2017)

    CAS  Google Scholar 

  218. Huang, L., Chen, J., Liu, Z., et al.: Adaptive thermal control for PEMFC systems with guaranteed performance. Int. J. Hydrog. Energy 43, 11550–11558 (2018)

    CAS  Google Scholar 

  219. Raman, S., Swaminathan, S., Bhardwaj, S., et al.: Rapid humidity regulation by mixing of dry and humid gases with feedback control for PEM fuel cells. Int. J. Hydrog. Energy 44, 389–407 (2019)

    CAS  Google Scholar 

  220. Ahmed, D.H., Sung, H.J., Bae, J., et al.: Reactants flow behavior and water management for different current densities in PEMFC. Int. J. Heat Mass Transf. 51, 2006–2019 (2008)

    CAS  Google Scholar 

  221. Baharlou Houreh, N., Afshari, E.: Three-dimensional CFD modeling of a planar membrane humidifier for PEM fuel cell systems. Int. J. Hydrog. Energy 39, 14969–14979 (2014)

    CAS  Google Scholar 

  222. Karnik, A.Y., Sun, J., Stefanopoulou, A.G., et al.: Humidity and pressure regulation in a PEM fuel cell using a gain-scheduled static feedback controller. IEEE Trans. Contr. Syst. Trans. 17, 283–297 (2009)

    Google Scholar 

  223. Chao, C.H., Jen, T.C.: A new humidification and heat control method of cathode air for a PEM fuel cell stack. Int. J. Heat Mass Transf. 58, 117–124 (2013)

    CAS  Google Scholar 

  224. Rosanas-Boeta, N., Ocampo-Martinez, C., Kunusch, C.: On the anode pressure and humidity regulation in PEM fuel cells: a nonlinear predictive control approach. IFAC-PapersOnline 48, 434–439 (2015)

    Google Scholar 

  225. Headley, A., Yu, V., Borduin, R., et al.: Development and experimental validation of a physics-based PEM fuel cell model for cathode humidity control design. IEEE/ASME Trans. Mechatron. 21, 1775–1782 (2015)

    Google Scholar 

  226. Li, Q., Chen, W., Liu, Z., et al.: Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway. J. Power Sources 279, 267–280 (2015)

    CAS  Google Scholar 

  227. Musardo, C., Rizzoni, G., Guezennec, Y., et al.: An adaptive algorithm for hybrid electric vehicle energy management. Eur. J. Control 11, 509–524 (2005)

    Google Scholar 

  228. Fletcher, T., Thring, R., Watkinson, M.: An energy management strategy to concurrently optimise fuel consumption and PEM fuel cell lifetime in a hybrid vehicle. Int. J. Hydrog. Energy 41, 21503–21515 (2016)

    CAS  Google Scholar 

  229. Allaoua, B., Asnoune, K., Mebarki, B.: Energy management of PEM fuel cell/ supercapacitor hybrid power sources for an electric vehicle. Int. J. Hydrog. Energy 42, 21158–21166 (2017)

    CAS  Google Scholar 

  230. Ettihir, K., Boulon, L., Agbossou, K.: Energy management strategy for a fuel cell hybrid vehicle based on maximum efficiency and maximum power identification. IET Electr. Syst. Transp. 6, 261–268 (2016)

    Google Scholar 

  231. Zhang, X., Liu, L., Dai, Y., et al.: Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs. Int. J. Hydrog. Energy 43, 10094–10103 (2018)

    CAS  Google Scholar 

  232. Zhang, X., Liu, L., Dai, Y.: Fuzzy state machine energy management strategy for hybrid electric UAVs with PV/fuel cell/battery power system. Int. J. Aerosp. Eng. 2018, 1–16 (2018)

    Google Scholar 

  233. Haseltalab, A., Negenborn, R.R., Lodewijks, G.: Multi-level predictive control for energy management of hybrid ships in the presence of uncertainty and environmental disturbances. IFAC-PapersOnLine 49, 90–95 (2016)

    Google Scholar 

  234. Obaid, W., Hamid, A.K., Ghenai, C.: Hybrid PEM fuel-cell-solar power system design for eectric boat with MPPT system and fuzzy energy management. In: International Conference on Communications, Signal Processing, and their Applications (ICCSPA), pp. 1–7 (2019)

  235. Ou, K., Yuan, W.W., Choi, M., et al.: Optimized power management based on adaptive-PMP algorithm for a stationary PEM fuel cell/battery hybrid system. Int. J. Hydrog. Energy 43, 15433–15444 (2018)

    CAS  Google Scholar 

  236. Bayrak, Z.U., Bayrak, G., Ozdemir, M.T., et al.: A low-cost power management system design for residential hydrogen and solar energy based power plants. Int. J. Hydrog. Energy 41, 12569–12581 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Key R&D Program of China (No. 2018YFB1502700), the Science and Technology Program of Sichuan Province (Nos. 2019YFG0002 and 2019ZDZX0002), the Chengdu Science and Technology Program (2019-YF08-00004-GX) and the Initiative Scientific Research Program of the University of Electronic Science and Technology of China (No. ZYGX2018KYQD207).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Yin or Hao Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Peng, C., Yin, C. et al. Review of System Integration and Control of Proton Exchange Membrane Fuel Cells. Electrochem. Energ. Rev. 3, 466–505 (2020). https://doi.org/10.1007/s41918-020-00068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00068-1

Keywords

Navigation