Skip to main content
Log in

Aminophosphine Oxides: A Platform for Diversified Functions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

This review summarizes significant contributions reported on aminophosphine oxides (AmPOs), specifically those containing at least one amino group present as amino substituents on α- and β-carbons including direct P–N bond containing molecules. AmPOs have additional ‘N’ site(s), including highly basic ‘P=O’ groups, and these features make favor smooth and unexpected behavior. The most striking manifestations of flexibility of AmPOs are that they are exciting ligand systems for the coordination chemistry of actinides, and their involvement in catalytic organic reactions including enantioselective opening of meso-epoxides, addition of silyl enol ethers, allylation with allyltributylstannane, etc. The diverse properties of the AmPOs and their metal complexes demonstrate both the scope and complexity of these systems, depending on the basicity of phosphoryl group, and nature of the substituents on the pentavalent tetracoordinate phosphorus atom and metal. Two components key to understanding the challenges of actinide separations are detailed here, namely, previously described separation methods, and recent investigations into the fundamental coordination chemistry of actinides. Both are aimed at probing the critical features necessary for improved selectivity of separations. This review leads to the conclusion that, although many AmPOs have already been discovered and developed over the past century, many opportunities nevertheless exist for further developments towards new extraction processes and new catalytic materials by fine tuning the electronic and steric properties of substituents on the central phosphorus atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 5
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Fig. 6
Scheme 14
Fig. 7
Fig. 8
Scheme 15
Fig. 9
Scheme 16
Scheme 17
Scheme 18
Fig. 10
Fig. 11
Scheme 19
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 20
Fig. 16
Scheme 21
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Fig. 25
Fig. 26
Scheme 26
Scheme 27
Scheme 28

Similar content being viewed by others

Abbreviations

AmPOs:

Aminophosphine oxides

tpppO:

Tripiperidinophosphine oxide

TOPO:

Tri-n-octylphosphine oxide

TEHPO:

Tris(2-ethylhexyl)phosphine oxide

HDPM:

Bis(di-n-hexylphosphinyl)methane

EBDPM:

Bis[bis(2-ethylbutyl)phosphinyl]methane

CMPOs:

Carbamoyl methylphosphine oxides

TRUEX:

Transuranium extraction

CCD:

Cambridge crystallographic data

TCE:

Tetrachloroethane

TGA:

Thermogravimetric analysis

CMP:

Carbamoylmethylphosphonate

NOPOs:

Phosphinopyridine N,P-dioxides

MNOPOs:

(Phosphinomethyl)pyridine N,P-dioxides

DMNOPOPOs:

Bis(phosphinomethyl)pyridine N,P, p-trioxides

TBDPSCl:

t-butyldiphenylsilyl chloride

TBDMSCl:

t-butyldimethylsilyl chloride

LDA:

Lithium diisopropylamide

PICO:

Picolinamide

DGA:

Dimethylglyoxime

HLLW:

High level liquid waste

References

  1. Horwitz EP, Schulz WW (1991) In: Cecille L, Casarci M, Pietrelli L (eds) The TRUEX process: a vital tool for disposal of US defense nuclear waste, new separation chemistry techniques for radioactive waste and other specific applications. Elsevier, London, pp 21–29

    Chapter  Google Scholar 

  2. Horwitz EP, Kalina DG, Diamond H, Vandegrift DG, Schulz WW (1985) Solvent Extr Ion Exch 3:75–109

    Article  CAS  Google Scholar 

  3. Kolodiazhnyi Tetrahedron (2012) Asymmetry 23:1–46

    Article  CAS  Google Scholar 

  4. Ingle GK, Liang Y, Mormino MG, Li G, Fronczek FR, Antilla JC (2011) Org Lett 13:2054–2057

    Article  CAS  Google Scholar 

  5. Cherkasov RA, Garifzyanov AR, Koshkin SA, Davletshina NV (2012) Russ J Gen Chem 82:1453–1454

    Article  CAS  Google Scholar 

  6. Kraszewski J (2007) Stawinski. Pure Appl Chem 79:2217–2227

    Article  CAS  Google Scholar 

  7. Trippett S, Miller JA (eds) (1973) Organophosphorus chemistry. RSC, London, pp 73–86

  8. Hays HR, Peterson DJ (1972) Tertiary phosphine oxides. In: Kosolapoff GM, Maier L (eds) Organic phosphorus compounds. Wiley, New York, pp 341–500

  9. Karayannis NM, Mikulski CM, Pytlewski LL (1971) Inorg Chim Acta Rev 5:69–105

    Article  CAS  Google Scholar 

  10. Karpagam S, Guhanathan S (2013) J Appl Polym Sci 129:2046–2056

    Article  CAS  Google Scholar 

  11. Lemos A (2009) Molecules 14:4098–4119

    Article  CAS  Google Scholar 

  12. Glazier MJ, Levason W, Matthews ML, Thornton PL, Webster M (2004) Inorg Chim Acta 357:1083–1091

    Article  CAS  Google Scholar 

  13. Puddephatt RJ (1983) Chem Soc Rev 12:99–127

    Article  CAS  Google Scholar 

  14. Harvey JS, Malcolmson SJ, Dunne KS, Meek SJ, Thompson AL, Schrock RR, Hoveyda AH, Gouverneur V (2009) Angew Chem Int Ed 48:762–766

    Article  CAS  Google Scholar 

  15. Chaudret B, Delavaux B, Poilblanc R (1988) Coord Chem Rev 86:191–243

    Article  CAS  Google Scholar 

  16. McAuliffe CA (1987) Chapter 14. In: Wilkinson G, Gillard RD, Mc Cleverty JA (eds) Comprehensive Coordination Chemistry, Pergamon, Oxford, pp 989–999

  17. dos Santos MR, Donnici CL, Da Costa JBN, Caixeiro JMR (2007) Quim Nova 30:159–170

    Article  Google Scholar 

  18. Vysvaril M, Dastych D, Tarab J, Necas M (2009) Inorg Chim Acta 362:4899–4905

    Article  CAS  Google Scholar 

  19. Clayden J, Warren S (1996) Angew Chem Int Ed Engl 35:241–270

    Article  CAS  Google Scholar 

  20. Clayden J, Collington EW, Egert E, McElroy AB, Warren S (1994) J Chem Soc Perkin Trans 1:2801–2810

    Article  Google Scholar 

  21. Clayden J, Warren S (1994) J Chem Soc Perkin Trans 1:2811–2823

    Article  Google Scholar 

  22. Nelson A, Warren S (1999) J Chem Soc Perkin Trans 1:1963–1982

    Article  Google Scholar 

  23. Nelson S (1999) Warren. J Chem Soc Perkin Trans 1:1983–1998

    Article  Google Scholar 

  24. Ionova G, Ionov S, Rabbe C, Hill C, Madic C, Guillaumont R, Modoloe G, Krupad JC (2001) New J Chem 25:491–501

    Article  CAS  Google Scholar 

  25. Modolo G, Odoj R (1999) Solv Extr Ion Exch 17:33–53

    Article  CAS  Google Scholar 

  26. Ionova G, Madic C, Hill C, Rabbe C, Ionov S, Guillaumont R, Krupa JC (2001) Solv Extr Ion Exch 19:391–414

    Article  CAS  Google Scholar 

  27. Ackermann L (2007) Syn Lett 2007:507–526

    Google Scholar 

  28. Blümel J (2008) Coord Chem Rev 252:2410–2423

    Article  CAS  Google Scholar 

  29. Wallis CJ, Virieux D, Cristau HJ (2001) Encyclopedia of reagents for organic synthesis. Wiley, Chichester

    Google Scholar 

  30. Ackermann L (2008) In: Börner A (ed) Trivalent phosphorus compounds in asymmetric catalysis, synthesis and applications. Wiley, Weinheim, pp 831–847

    Google Scholar 

  31. Schaeffner B, Boerner A (eds) (2008) Phosphorus ligands in asymmetric catalysis, pp 785–805

  32. Baillie C, Xu L, Xiao J, Roberts SM (eds) (2004) Catalysts for fine chemical synthesis, pp 77–81

  33. Gajda A, Gajda T (2007) Curr Org Chem 11:1652–1668

    Article  CAS  Google Scholar 

  34. Mlynarz P, Rudzinska E, Berlicki L, Kafarski P (2007) Curr Org Chem 11:1593–1609

    Article  CAS  Google Scholar 

  35. Ackermann L (2006) Synthesis 2006:1557–1571

    Article  Google Scholar 

  36. Ackermann L, Born R, Spatz JH, Althammer A, Gschrei CJ (2006) Pure Appl Chem 78:209–214

    Article  CAS  Google Scholar 

  37. Dubrovina NV, Boerner A (2004) Angew Chem Int Ed 43:5883–5886

    Article  CAS  Google Scholar 

  38. Kim SW, Kim S, Tracy JB, Jasanoff A, Bawendi MG (2005) J Am Chem Soc 127:4556–4557

    Article  CAS  Google Scholar 

  39. Odinets IL, Artyushin OI, Sharova EV, Matveeva EV, Turanov AN, Karandashev VK (2013) Phosphorus Sulfur Silicon Relat Elem 188:146–149

    Article  CAS  Google Scholar 

  40. Hutton G, Jolliff T, Mitchell H, Warren S (1995) Tetrahedron Lett 36:7905–7908

    Article  CAS  Google Scholar 

  41. Iwanaga H, Aiga F (2010) J Lumin 130:812–816

    Article  CAS  Google Scholar 

  42. Casellato U, Sitran S, Tamburini S, Vigato PA, Graziani R (1984) Inorg Chim Acta 95:37–42

    Article  CAS  Google Scholar 

  43. Krishnamurthy SS (1996) Proc Ind Acad Sci Chem Sci 108:111–121

    CAS  Google Scholar 

  44. Hart FA, Wilkinson G, Guillard RD, McCleverty JA (eds) (1987) Comprehensive coordination chemistry. Pergamon, Oxford

    Google Scholar 

  45. Tetsuhiro N, Takamasa M, Takayoshi M, Yasumasa H (2005) J Org Chem 70:7172–7178

    Article  CAS  Google Scholar 

  46. Jung LY, Tsai SH, Hong FE (2009) Organometallics 28:6044–6053

    Article  CAS  Google Scholar 

  47. Dam HH, Reinhoudt DN, Verboom W (2007) Chem Soc Rev 36:367–378 (and references therein)

    Article  CAS  Google Scholar 

  48. Engel R, Rizzo JI (2006) Curr Org Chem 10:2393–2405

    Article  CAS  Google Scholar 

  49. Verkade JG, Coskram KJ (1972) Organophosphorus compounds. In: Kosolapoff GM, Maier L (eds) Wiley, New York, pp 1–53

  50. Payne DS, Walker AP (1966) J Chem Soc 498–499

  51. Zubiri MRI, Woollins JD (2003) Comments Inorg Chem 24:189–252

    Article  CAS  Google Scholar 

  52. Dyer PW, Hanton MJ, Kemmitt RDW, Padda R, Singh N (2003) Dalton Trans 104–113

  53. Ewart G, Payne DS, Porte AL, Lane AP (1962) J Chem Soc 3984–3990

  54. Singh S, Nicholas KM (1998) Chem Commun 149–150

  55. Price NR, Chambers J (1990) In: Hartley FR (ed) The chemistry of organophosphorus compounds. Wiley, Chichester, p 649

    Google Scholar 

  56. Dolinsky MCB, Lin WO, Dias ML (2006) J Mol Catal A Chem 258:267–274

    Article  CAS  Google Scholar 

  57. Reinoso-Garcia MM, Verboom W, Reinhoudt DN, Brisach F, Arnaud-Neu F, Liger K (2005) Solv Extr Ion Exch 23:425–437

    Article  CAS  Google Scholar 

  58. Ansell J, Wills M (2002) Chem Soc Rev 31:259–268

    Article  CAS  Google Scholar 

  59. Cherkasov RA, Nuriazdanova GKh, Garifzyanov AR (2006) Russ J Gen Chem 76:202–205

    Article  CAS  Google Scholar 

  60. Vasil’ev RI, Durmanova NV, Garifzyanov AR, Cherkasov RA (2003) Russ J Gen Chem 73:994–995

    Article  Google Scholar 

  61. Garifzyanov AR, Vasil’ev RI, Cherkasov RA (2005) Russ J Gen Chem 75:217–224

    Article  CAS  Google Scholar 

  62. Garifzyanov AR, Zakharov SV, Kryukov SV, Galkin VI, Cherkasov RA (2005) Russ J Gen Chem 75:1208–1211

    Article  CAS  Google Scholar 

  63. Cherkasov RA, Garifzyanov AR, Zakharov ZV, Vinokurov AI, Galkin VO (2006) Russ J Gen Chem 76:417–420

    Article  CAS  Google Scholar 

  64. Garifzyanov AR, Zakharov SV, Cherkasov RA (2005) Russ J Gen Chem 75:1057–1059

    Article  CAS  Google Scholar 

  65. Cherkasov RA, Galkin VI, Khusainova NG, Mostovaya OA, Garifzyanov AR, Nuriazdanova GKh, Krasnova NS, Berdnikov EA (2005) Russ J Gen Chem 41:1481–1484

    CAS  Google Scholar 

  66. Cherkasov RA, Garifzjanov AR, Krasnova NS, Talan AS, Tarasov AV, Davletshin RR (2008) Abstract of papers, 38th International Conference on Coordination Chemistry, Jerusalem, p 334

  67. Garifzyanov AR, Nuriazdanova GKh, Zakharov SV, Cherkasov RA (2004) Russ J Gen Chem 74:1885–1889

    Article  CAS  Google Scholar 

  68. Zakharov SV, Nuriazdanova GKh, Garifzyanov AR, Galkin VI, Cherkasov RA (2004) Russ J Gen Chem 74:873–881

    Article  CAS  Google Scholar 

  69. Cherkasov RA, Vasil’ev RI, Garifzyanov AR, Talan AS (2008) Russ J Gen Chem 78:1167–1171

    Article  CAS  Google Scholar 

  70. Cherkasov RA, Garifzjanov AR, Krasnova NS, Talan AS, Badretdinova GZ, Burnaeva LM, Ivkova GA (2008) Phosphorus Sulfur Silicon Relat Elem 183:406–409

    Article  CAS  Google Scholar 

  71. Cherkasov RA, Talan AS, Tarasov AV, Garifzyanov AR (2008) Russ J Gen Chem 78:1330–1333

    Article  CAS  Google Scholar 

  72. Cherkasov RA, Garifzyanov AR, Talan AS, Davletshin RR, Kurnosova NV (2009) Russ J Gen Chem 79:1835–1849

    Article  CAS  Google Scholar 

  73. Gholivand K, Shariatinia Z, Yaghmaian F, Faramarzpour H (2006) Bull Chem Soc Jpn 79:1604–1606

    Article  CAS  Google Scholar 

  74. Biricik N, Kayan C, Gümgüm B, Fei Z, Scopelliti R, Dyson PJ, Gürbüz N, Özdemir I (2010) Inorg Chim Acta 363:1039–1047

    Article  CAS  Google Scholar 

  75. Fei Z, Neda I, Thönnessen H, Jones PG, Schmutzler R (1997) Phosphorus Sulfur Silicon Relat Elem 131:1–23

    Article  CAS  Google Scholar 

  76. Popovici C, Ońa-Burgos P, Fernández I, Roces L, García-Granda S, Iglesias MJ, Ortiz FL (2010) Org Lett 12:428–431

    Article  CAS  Google Scholar 

  77. Gholivand K, Pourayoubi M, Farshadian S, Molani S, Shariatinia Z (2005) X-ray Struct Anal Online 21:x55–x56

    Article  CAS  Google Scholar 

  78. Kapoor RN, Guillory P, Schulte L, Cervantes-Lee F, Haiduc I, Parkanyi L, Pannell KH (2005) Appl Organometal Chem 19:510–517

    Article  CAS  Google Scholar 

  79. Gholivand K, Gholami A, Ebrahimi AAV, Abolghasemi ST, Esrafili MD, Fadaeic FT, Schenk KJ (2015) RSC Adv 5:17482–17492

    Article  CAS  Google Scholar 

  80. Jalalifar M, Khalikov S (2012) Int J Mod Org Chem 1:129–135

    CAS  Google Scholar 

  81. Bourne SA, Mbianda XY, Modro TA, Nassimbeni LR, Wan H (1998) J Chem Soc Perkin Trans 2:83–88

    Article  Google Scholar 

  82. Dutta DK, Deb B (2011) Coord Chem Rev 255:1686–1712

    Article  CAS  Google Scholar 

  83. Swor CD, Tyler DR (2011) Coord Chem Rev 255:2860–2881

    Article  CAS  Google Scholar 

  84. Shaikh TM, Weng C-M, Hong F-E (2012) Coord Chem Rev 256:771–803

    Article  CAS  Google Scholar 

  85. Sterenberg BT, Scoles L, Carty AJ (2002) Coord Chem Rev 231:183–197

    Article  CAS  Google Scholar 

  86. Slawin AMZ, Wheatley J, Woollins JD (2005) Eur J Inorg Chem 2005:713–720

    Article  CAS  Google Scholar 

  87. Petrov KA, Gavrilova AI, Korotkova VP (1962) Z Obsh Khim 32:915–927

    CAS  Google Scholar 

  88. Cates LA, Li VS, Saddawi BH, Alkadhi KA (1985) J Med Chem 28:595–597

    Article  CAS  Google Scholar 

  89. Nielsen RP, Sisler HH (1963) Inorg Chem 2:753–756

    Article  CAS  Google Scholar 

  90. Sisler HH, Nielsen RP (1966) Inorg Synth 8:7406–7409

    Google Scholar 

  91. Donoghue JT, Fernandez E, Peters DA (1969) Inorg Chem 8:1191–1193

    Article  CAS  Google Scholar 

  92. Rømming C, Songstad J (1978) Acta Chem Scand Ser A 32:689–699

    Article  Google Scholar 

  93. Popoff IC, Huber LK, Block BP, Morton PD, Riordan RP (1963) J Org Chem 28:2898–2900

    Article  CAS  Google Scholar 

  94. Smith NL, Sisler HH (1961) J Org Chem 26:5145–5149

    Article  CAS  Google Scholar 

  95. Schmidt H, Lensink C, Xi SK, Verkade JGZ, Anorg Z (1989) Allg Chem 578:75–80

    Article  CAS  Google Scholar 

  96. Alberti A, Astolfi P, Carloni P, Greci L, Rizzolie C, Stipa P (2015) New J Chem 39:8964–8970

    Article  CAS  Google Scholar 

  97. Liu X, Verkade JG (2001) Heteroatom Chem 12:21–26

    Article  CAS  Google Scholar 

  98. Goud EV, Pavankumar BB, Paul A, Shruthi Y, Sivaramakrishna A, Vijayakrishna K, Sabharwal N, Rao CVSB, Clayton HS (2013) J Coord Chem 66:2647–2658

    Article  CAS  Google Scholar 

  99. Pavankumar BB, Goud EV, Selvakumar R, Ashokkumar SK, Sivaramakrishna A, Vijayakrishna K, Rao CVSB, Sabharwal KN, Jha PC (2015) RSC Adv 5:4727–4736

    Article  CAS  Google Scholar 

  100. Gusev OV, Peganova TA, Gonchar AV, Petrovskii PV, Lyssenko KA, Ustynyuk NA (2009) Phosphorus Sulfur Silicon Relat Elem 184:322–331

    Article  CAS  Google Scholar 

  101. Tolmachev AA, Yurchenko AA, Merculov AS, Semenova MG, Zarudnitskii EV, Ivanov VV, Pinchuk AM (1999) Heter Chem 10:585–597

    Article  CAS  Google Scholar 

  102. Matevosyan GL, Zavlin PM (1990) Chem Heterocycl Comp 26:599–616

    Article  Google Scholar 

  103. Marchenko AP, Koidan HN, Huryeva AN, Zarudnitskii EV, Yurchenko AA, Kostyuk AN (2010) J Org Chem 75:7141–7145

    Article  CAS  Google Scholar 

  104. Samuel RC, Kashyap RP, Krawiec M, Watson WH, Neilson RH (2002) Inorg Chem 41:7113–7124

    Article  CAS  Google Scholar 

  105. Biricik N, Durap F, Kayan C, Gümgüma B, Gürbüz N, Özdemir I, Han Ang W, Fei Z, Scopelliti R (2008) J Organomet Chem 693:2693–2699

    Article  CAS  Google Scholar 

  106. Kolodiazhnyi OI, Gryshkun EV, Andrushko NV, Freytag M, Jones PG, Schmutzler R (2003) Tetrahedron Asymmetry 14:181–183

    Article  CAS  Google Scholar 

  107. Keglevich G, Szekrényi A (2008) Lett Org Chem 5:616–622

    Article  CAS  Google Scholar 

  108. Fields EK (1952) J Am Chem Soc 74:1528–1531

    Article  CAS  Google Scholar 

  109. Zefirov NS, Matveeva ED (2008) Arkivoc 1:1–17

    Google Scholar 

  110. Priya S, Balakrishna MS, Mobin SM (2005) Polyhedron 24:1641–1650

    Article  CAS  Google Scholar 

  111. Light RW, Hutchins LD, Paine RT, Campana CF (1980) Inorg Chem 19:3597–3604

    Article  CAS  Google Scholar 

  112. Hall RG, Riebli P (2002) Phosphorus Sulfur Silicon Relat Elem 177:1557–1562

    Article  CAS  Google Scholar 

  113. Du L-Z, Gong J-F, Zhu Y, Wu Y-J, Song M-P (2006) Inorg Chem Commun 9:529–532

    Article  CAS  Google Scholar 

  114. Olszewski TK, Boduszek B, Sobek S, Kozłowski H (2006) Tetrahedron 62:2183–2189

    Article  CAS  Google Scholar 

  115. Goldeman W, Olszewski TK, Boduszeka B, Sawka-Dobrowolska W (2006) Tetrahedron 62:4506–4518

    Article  CAS  Google Scholar 

  116. de los Santos JM, Etemad-Moghadam D, Ignacio R, Aparicio D, Palacios F (2007) J Org Chem 72:5202–5206

    Article  CAS  Google Scholar 

  117. Semenzin D, Etemad-Moghadam G, Albouy D, Diallo O, Koenig M (1997) J Org Chem 62:2414–2422

    Article  CAS  Google Scholar 

  118. Merino P, Marqués-López E, Herrera RP (2008) Adv Synth Catal 350:1195–1208

    Article  CAS  Google Scholar 

  119. Gröger H, Hammer B (2000) Chem Eur 6:943–948

    Article  Google Scholar 

  120. Hiratake J, Oda J (1997) Biosci Biotechnol Biochem 61:211–218

    Article  CAS  Google Scholar 

  121. Zhang D, Yuan C (2008) Chem Eur J 14:6049–6052

    Article  CAS  Google Scholar 

  122. Parsons WH, Patchett AA, Bull HG, Schoen WR, Taub D, Davidson J, Combs PL, Springer JP, Gadebusch H, Weissberger B, Valiant ME, Mellin TN, Busch RD (1988) J Med Chem 31:1772–1778

    Article  CAS  Google Scholar 

  123. Fu X, Loh W-T, Zhang Y, Chen T, Ma T, Liu H, Wang J, Tan C-H (2009) Angew Chem Int Ed 48:7387–7390

    Article  CAS  Google Scholar 

  124. Maj AM, Pietrusiewicz KM, Suisse I, Agbossou F, Mortreux A (1999) Tetrahedron Asymmetry 10:831–835

    Article  CAS  Google Scholar 

  125. Su HY, Song Y, Taylor MS (2016) Org Biomol Chem 14:5665–5672

    Article  CAS  Google Scholar 

  126. Booth BL, Lawrence NJ, Rashid HS (1997) J Chem Soc Perkin Trans 1:3509–3518

    Article  Google Scholar 

  127. Palacios F, Aparicio D, de los Santos JM, Baceiredo A, Bertrand G (2000) Tetrahedron 56:663–669

    Article  CAS  Google Scholar 

  128. Xi Z, Zhang WX, Song Z, Zheng W, Kong F, Takahash T (2005) J Org Chem 70:8785–8789

    Article  CAS  Google Scholar 

  129. Palacios F, Aparicio D, Lόpez Y, de los Santos JM (2004) Tetrahedron Lett 45:4345–4348

    Article  CAS  Google Scholar 

  130. Palacios F, Aparicio D, Lόpez Y, de los Santos JM (2005) Tetrahedron 61:2815–2830

    Article  CAS  Google Scholar 

  131. Palacios F, Ochoa de Retana AM, Alonso JM (2006) J Org Chem 71:6141–6148

    Article  CAS  Google Scholar 

  132. Palacios F, Aparicio D, Lόpez Y, de los Santos JM (1999) Tetrahedron 55:13767–13778

    Article  CAS  Google Scholar 

  133. Oliana M, King F, Horton PN, Hursthouse MB, (Mimi) Hii KK (2006) J Org Chem 71:2472–2479

    Article  CAS  Google Scholar 

  134. Feeder N, Fox DJ, Medlock JA, Warren S (2002) J Chem Soc Perkin Trans 1:1175–1180

    Article  CAS  Google Scholar 

  135. Elena K, Andrey Z, Bobrovnikova AA, Cherkasova TG, Shirokolobova AG, Bolsunovskaya LM (2014) Procedia Chem 10:530–534

    Article  CAS  Google Scholar 

  136. Berthet J-C, Nierlich M, Ephritikhine M (2003) Polyhedron 22:3475–3482

    Article  CAS  Google Scholar 

  137. Karroker DG (1970) J Chem Educ 47:424–430

    Article  Google Scholar 

  138. Harman ME, Hart FA, Hursthouse MB, Moss GP, Raithby PR (1976) J Chem Soc Chem Commun 11:396–397

    Article  Google Scholar 

  139. Bushuk BA, Bushuk SB, Cherepennikova NF, Douglas WE, Fukin GK, Grigoriev IS, Klapshina LG, van der Lee A, Semenov VV (2004) Mendeleev Commun 14:109–111

    Article  CAS  Google Scholar 

  140. Donoghue JT, Fernandez E, McMillan JA, Peters DA (1969) J Inorg Nucl Chem 31:1431–1433

    Article  CAS  Google Scholar 

  141. de Matos P, Freitas MA, Marshall AG, Marques N, Carvalho A, Isolani PC, Vicentini G (2001) J Alloys Comp 323–324:147–149

    Article  Google Scholar 

  142. Das D, Goud EV, Annam S, Jayalakshmi S, Gopakumar G, Rao CVSB, Sivaraman N, Sivaramakrishna A, Vijayakrishna K (2015) RSC Adv 5:107421–107429

    Article  CAS  Google Scholar 

  143. Rao CVSB, Jayalakshmi S, Subramaniam S, Sivaraman N, Rao PRV (2015) Radiochim Acta 103:345–358

    Article  CAS  Google Scholar 

  144. Braun S, Zinner LB, Vicentini G (1993) An Assoc Bras Quim 42–43:20–24

    Google Scholar 

  145. Goud EV, Pavankumar BB, Reddy BHP, Vijayakrishna K, Sivaramakrishna A, Sabharwal KN, Rao CVSB (2015) J Ind Chem Soc 92:760–762

    CAS  Google Scholar 

  146. Filho SAJ, Isolani PC, Vicentini G (1997) J Alloys Comp 249:91–93

    Article  Google Scholar 

  147. Rao CVSB, Srinivasan TG, Rao PRV (2010) Solvent Extr Ion Exch 28:1–23

    Article  CAS  Google Scholar 

  148. Le Saulnier L, Urbanov S, Scopelliti R, Elhabiri M, Bunzli JCG (1999) J Chem Soc Dalton Trans 22:3919–3925

    Article  Google Scholar 

  149. Dieleman CB, Matt D, Neda I, Schmutzler R, Harriman A, Yaftian R (1999) Chem Commun 18:1911–1912

    Article  Google Scholar 

  150. Arduini A, Bohmer V, Delmau L, Desreux JF, Dozel JF, Carrera MAG, Lambert B, Musigmann C, Pochini A, Shivanyuk A, Ugozzoli F (2000) Chem Eur J 6:2135–2144

    Article  CAS  Google Scholar 

  151. De F, Ramirez M, Urbanov S, Cecile C, Muller G, Fatin-Rouge N, Scopelliti R, Bunzli JCG (2002) J Chem Soc Dalton Trans 23:4505–4513

    Google Scholar 

  152. Koppikar DK, Sivapullaiah PV, Ramakrishnan L, Soundararajan S (1978) Complexes of the lanthanides with neutral oxygen donor ligands. Springer, Berlin, pp 135–213

    Google Scholar 

  153. da Silva MFP, Zukerman-Schpector J, Vicentini G, Isolani PC (2005) Inorg Chim Acta 358:796–800

    Article  CAS  Google Scholar 

  154. de Aquino AR, Bombieri G, Isolani PC, Vicentini G, Zukerman-Schpector J (2000) Inorg Chim Acta 306:102–105 (and references therein)

    Article  Google Scholar 

  155. Anagnostis J, Turnbull MM (2004) Polyhedron 23:125–133

    Article  CAS  Google Scholar 

  156. Yang H, Wong EH, Rheingold AL, Owens-Watermire BE, Haggerty BS (1994) Organometallics 13:4825–4834

    Article  CAS  Google Scholar 

  157. Yang H, Wong EH, Rheingold AL, Owens-Watermire BE (1993) J Chem Soc Chem Commun 1:35–37

    Article  Google Scholar 

  158. Priya S, Balakrishna MS, Mague JT, Mobin SM (2003) Inorg Chem 42:1272–1281

    Article  CAS  Google Scholar 

  159. Hergenrother PM, Thompson CM, Smith JG Jr, Connell JW, Hinkleya JA, Lyonc RE, Moulton R (2005) Polymer 46:5012–5024

    Article  CAS  Google Scholar 

  160. Stoscup JA, Staples RJ, Biros SM (2014) Acta Cryst E70:188–191

    Google Scholar 

  161. Reinoso-Garcia MM, Janczewski D, Reinhoudt DN, Verboom W, Malinowska E, Pietrzak M, Hill C, Báča J, Grüner B, Selucky P, Grüttner C (2006) New J Chem 30:1480–1492

    Article  CAS  Google Scholar 

  162. McGuigan C, Harris SA, Daluge SM (2005) J Med Chem 48:3504–3515

    Article  CAS  Google Scholar 

  163. Gholivand K, Valmoozi AAE, Gholami A, Dusek M, Abolghasemi S (2016) J Organomet Chem 806:33–44

    Article  CAS  Google Scholar 

  164. Li Y, Mao S (2007) Bioorg Med Chem Lett 17:3398–3401

    Article  CAS  Google Scholar 

  165. Liu F, Sharon A, Chu CK (2008) J Fluorine Chem 129:743–766

    Article  CAS  Google Scholar 

  166. Jansen RS, Rosing H (2010) J Chromatogr B 878:621–627

    Article  CAS  Google Scholar 

  167. Lalanne M, Paci A (2007) Bioorg Med Chem Lett 17:2237–2240

    Article  CAS  Google Scholar 

  168. Lalanne M, Khoury H (2009) Int J Pharm 379:235–243

    Article  CAS  Google Scholar 

  169. Reddy SS, Rao VK, Krishna BS, Raju CN, Rao PV (2011) Phosphorus Sulfur Silicon Relat Elem 186:1411–1421

    Article  CAS  Google Scholar 

  170. Rao AJ, Rao VK, Rao PV, Ghosh SK, Raju CN (2010) Eur J Chem 1:297–301

    Article  CAS  Google Scholar 

  171. Rao VK, Rao AJ, Reddy SS, Raju CN, Rao PV, Ghosh SK (2010) Eur J Med Chem 45:203–209

    Article  CAS  Google Scholar 

  172. Reddy SS, Rao VK, Ramana KV, Reddy CS, Ghosh SK, Raju CN (2010) Der Pharma Chem 2:1–9

    CAS  Google Scholar 

  173. Lam KH, Chui CH, Gambari R, Wong RSM, Cheng GYM, Lau FY, Chan ASC (2010) Eur J Med Chem 45:5527–5530

    Article  CAS  Google Scholar 

  174. Rao VK, Reddy SS, Krishna BS, Reddy CS, Reddy NP, Reddy TCM, Raju CN, Ghosh SK (2011) Lett Drug Des Discov 8:59–64

    Article  CAS  Google Scholar 

  175. Hu DY, Wan QQ, Yang S, Song BA, Bhadury PS, Jin LH, Yan K, Liu F, Chen Z, Xue W (2008) J Agric Food Chem 56:998–1001

    Article  CAS  Google Scholar 

  176. Bartley DM, Coward JK (2005) J Org Chem 70:6757–6774

    Article  CAS  Google Scholar 

  177. Cheng X, Horton PN, Hursthouse MB, Kuok (Mimi) Hii K (2004) Tetrahedron Asymmetry 15:2241–2246

    Article  CAS  Google Scholar 

  178. Bond WD (1990) Thorex process. In: Schulz WW, Burger LL, Navratil JD, Bender KP, Bond WD (eds) Science and technology of tributyl phosphate (applications of tributyl phosphate in nuclear fuel reprocessing), vol III. CRC, Boca Raton

  179. Siddall TH III (1959) Ind Eng Chem 51:41–44

    Article  CAS  Google Scholar 

  180. Ghilardi CA, Innocent P, Misollini S, Orlandini A (1986) J Chem Soc Dalton Trans 2075–2081

  181. Sinyavskaya EI, Tsymbal LV, Yatsimirskii KB, Pisareva SA, Medved TY, Kabachnik MI (1986) Russ Chem Bull 35:160–165

    Article  Google Scholar 

  182. Newton G, Caughman HD, Taylor RC (1974) J Chem Soc Dalton Trans 258–264

  183. Kaŝpárek F, Trávnicek Z, Posolda M, Kŝindelár Z, Marek J (1998) J Coord Chem 44:61–70

    Article  Google Scholar 

  184. Gumienna-Kontecka E, Galezowska J, Drag M, Lataika R, Kafarski P, Kozlowski H (2004) Inorg Chem Acta 357:1632–1636

    Article  CAS  Google Scholar 

  185. Cherkasov RA, Garifzyanov AR, Kurnosova NV, Matveeva EV, Odinets IL (2012) Russ Chem Bull 61:174–180

    Article  CAS  Google Scholar 

  186. Laskorin BN, Fedorova LA, Stupin NP, Kabachnik MI, Medved T Ya, Polikarpov YuM (1970) Radiokhimiya 12:335 (in Russian)

    CAS  Google Scholar 

  187. Turanov AN, Karandashev VK, Bondarenko NA, Urinovich EM, Tsvetkov EN (1996) Russ J Inorg Chem 41:1742–1747

    CAS  Google Scholar 

  188. Matveeva EV, Petrovskii PV, Odinets IL (2008) Tetrahedron Lett 49:6129–6133

    Article  CAS  Google Scholar 

  189. Matveeva EV, Petrovskii PV, Klemenkova ZS, Bondarenko NA, Odinets IL (2010) C. R. Chimie 13:864–970

    Article  CAS  Google Scholar 

  190. Matveeva EV, Shipov AE, Petrovskii PV, Odinets IL (2011) Tetrahedron Lett 52:6562–6565

    Article  CAS  Google Scholar 

  191. Matveeva EV, Sharova EV, Turanov AN, Karandashev VK, Odinets IL (2012) Cent Eur J Chem 10:1933–1941

    CAS  Google Scholar 

  192. Arnaud-Neu F, Böhmer V, Jean-François Dozol C, Grüttner C, Jakobi RA, Kraft D, Mauprivez O, Rouquette H, Schwing-Weill MJ, Simon N, Vogt W (1996) J Chem Soc Perkin Trans 2:1175–1182

    Article  Google Scholar 

  193. Delmau LH, Simon N, Schwing-Weill MJ, Arnaud-Neu F, Dozol JF, Eymard S, Tournois B, Böhmer V, Grüttner C, Musigmann C, Tunayar A (1998) Chem Commun 16:1627–1628

    Article  Google Scholar 

  194. Boerrigter H, Verboom W, Reinhoudt DN (1997) J Org Chem 62:7148–7155

    Article  CAS  Google Scholar 

  195. Boerrigter H, Tomasberger T, Verboom W, Reinhoudt DN (1999) Eur J Org Chem 1999:665–674

    Article  Google Scholar 

  196. Peters MW, Werner EJ, Scott MJ (2002) Inorg Chem 41:1707–1716

    Article  CAS  Google Scholar 

  197. Böhmer V, Dozol J-F, Grüttner C, Liger K, Matthews SE, Rudershausen S, Saadioui M, Wang P (2004) Org Biomol Chem 2:2327–2334

    Article  CAS  Google Scholar 

  198. Koma Y, Watanabe M, Nemoto S, Tanaka Y (1998) J Nucl Sci Tech 35:130–136

    Article  CAS  Google Scholar 

  199. Paine RT, Bond EM, Parveen S, Donhart N, Duesler EN, Smith KA, Noth H (2002) Inorg Chem 41:444–448

    Article  CAS  Google Scholar 

  200. Rosario-Amorin D, Ouizem S, Dickie DA, Wen Y, Paine RT, Gao J, Grey JK, de Bettencourt-Dias A, Hay BP, Delmau LH (2013) Inorg Chem 52:3063–3083

    Article  CAS  Google Scholar 

  201. Grüttner C, Böhmer V, Casnati A, Dozol J-F, Reinhoudt DN, Reinoso-García MM, Rudershausen S, Teller J, Ungaro R, Verboom W, Wang P (2005) J Magn Magn Mater 293:559–566

    Article  CAS  Google Scholar 

  202. Rapko BM, Duesler EN, Smith PH, Paine RT, Ryan RR (1993) Inorg Chem 32:2164–2174

    Article  CAS  Google Scholar 

  203. Bertrand G, Cazaux J-B, Baceiredo A, Guerret O, Palacios F, Aparicio D, De Los Santos JM (2000) CR Acad Sci Paris Série IIc Chim Chem 3:261–265

    CAS  Google Scholar 

  204. Minghetti G, Stoccoro S, Cinellu MA, Zucca A, Manassero M, Sansoni M (1998) J Chem Soc Dalton Trans 4119–4126

  205. Palacios F, Aparicio D, García J (1996) Tetrahedron 52:9609–9628

    Article  CAS  Google Scholar 

  206. Gholivand Z Shariatinia (2006) J Organomet Chem 691:4215–4224

    Article  CAS  Google Scholar 

  207. Maj AM, Pietrusiewicz KM, Suisse I, Agbossou F, Mortreux A (2001) J Organomet Chem 626:157–160

    Article  CAS  Google Scholar 

  208. Pignolet LH (1983) Homogenous catalysis with metal phosphine complexes. Plenum, New York

    Book  Google Scholar 

  209. Colquhoun HM, Thompson DJ, Twigg MV (1991) Carbonylation: direct synthesis of carbonyl compounds. Plenum, New York

    Book  Google Scholar 

  210. Tkatchenko I, Wilkinson G, Stone FGA, Abel EW (eds) (1982) Comprehensive organometallic chemistry. Pergamon, Oxford

    Google Scholar 

  211. Stille JK, Trost BM, Fleming I (eds) (1991) Comprehensive organic chemistry. Pergamon, New York

    Google Scholar 

  212. Bahrmann H, Cornils B, Frohning CD, Mullen A (1980) In: Falbe J (ed) New synthesis with carbon monoxide. Springer, New York

    Google Scholar 

  213. Webb SL, Giandomenico CM, Halpem J (1986) J Am Chem Soc 108:345–347

    Article  CAS  Google Scholar 

  214. Nappa MJ, Santi R, Halpern J (1985) Organometallics 4:34–41

    Article  CAS  Google Scholar 

  215. Rahman MS, Oliana M, (Mimi) Hii KK (2004) Tetrahedron Asymmetry 15:1835–1840

    Article  CAS  Google Scholar 

  216. Zanotti-Gerosa A, Hems W, Groarke M, Hancock F (2005) Platin Metals Rev 49:158–165

    Article  CAS  Google Scholar 

  217. Andrieu J, Camus J-M, Poli R, Richard P (2001) New J Chem 25:1015–1023

    Article  CAS  Google Scholar 

  218. Bartels B, Martín CG, Nelson A, Russell MG, Warren S (1998) Tetrahedron Lett 39:1637–1640

    Article  CAS  Google Scholar 

  219. Mino T, Tanaka Y, Sato Y, Saito A, Sakamoto M, Fujita T (2003) Tetrahedron Lett 44:4677–4679

    Article  CAS  Google Scholar 

  220. Denmark SE, Coe DM, Pratt NE, Griedel BD (1994) J Org Chem 59:6620–6628

    Article  Google Scholar 

  221. Denmark SE, Fu J, Coe DM, Su X, Pratt NE, Griedel BD (2006) J Org Chem 71:1513–1522

    Article  CAS  Google Scholar 

  222. Denmark SE, Fu J (2000) J Am Chem Soc 122:12021–12022

    Article  CAS  Google Scholar 

  223. Denmark SE, Fu J, Lawler MJ (2006) J Org Chem 71:1523–1536

    Article  CAS  Google Scholar 

  224. Denmark SE, Fu J (2001) J Am Chem Soc 123:9488–9489

    Article  CAS  Google Scholar 

  225. Denmark SE, Fan Y, Eastgate MD (2005) J Org Chem 70:5235–5248

    Article  CAS  Google Scholar 

  226. Denmark SE, Fu J (2003) J Am Chem Soc 125:2208–2216

    Article  CAS  Google Scholar 

  227. Oyama T, Yoshioka H, Tomoi M (2005) Chem Commun 14:1857–1859

    Article  CAS  Google Scholar 

  228. Denmark SE, Pham SM (2003) J Org Chem 68:5045–5055

    Article  CAS  Google Scholar 

  229. Denmark SE, Wynn T, Beutner GL (2002) J Am Chem Soc 124:13405–13407

    Article  CAS  Google Scholar 

  230. Denmark SE, Beutner GL, Wynn T, Eastgate MD (2005) J Am Chem Soc 127:3774–3789

    Article  CAS  Google Scholar 

  231. Denmark SE, Barsanti PA, Wong K-T, Stavenger RA (1998) J Org Chem 63:2428–2429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.S. is grateful to Board of Research in Nuclear Sciences (BRNS), DAE, INDIA, Ref. No. 2012/37C/6/BRNS/No. 623) for the financial support to focus on the chemistry of phosphine oxide derivatives. E.V.G. is thankful to BRNS for a research fellowship. We thank Dr. C.V.S. Brahmmananda Rao (IGCAR, Kalpakkam, Tamil Nadu, India) for valuable suggestions. We thank VIT University for the support and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akella Sivaramakrishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goud, E.V., Sivaramakrishna, A. & Vijayakrishna, K. Aminophosphine Oxides: A Platform for Diversified Functions. Top Curr Chem (Z) 375, 10 (2017). https://doi.org/10.1007/s41061-016-0090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0090-7

Keywords

Navigation