Skip to main content
Log in

Effect of Solidification Environment on Microstructure and Indentation Hardness of Al–Zn–Mg Alloy Casts Developed Using Microwave Heating

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the present work, microwave casting of Al 7039 was carried out using microwave energy at 2.45 GHz and 1400 W. A set of casts were developed through the in situ microwave casting process inside the applicator cavity applying three different solidification conditions, i.e., closed cavity cooling (cast C1), open cavity cooling (cast C2) and water-cooled cavity cooling (cast C3), whereas another cast was developed through conventional microwave casting (cast C4). Microstructure and microindentation hardness studies of the developed casts revealed that dense cast with smaller equiaxed grains could be obtained in the cast C3. Presence of the intermetallic phases, MgZn2, Mg2Si, Al3Fe and Al8Fe2Si, was observed in the in situ casts, whereas the cast C4 contains intermetallic phases: MgZn2, Mg2Si, Al2Cu, Al2CuMg and Al7Cu2Fe. It was found that the grain structure and major attributes of the intermetallic precipitates (size, shape and distribution) in the casts significantly depend on the solidification conditions. Average microindentation hardness of the cast C4 was found to be 191 ± 32 HV which is higher than other casts. The study showed that microindentation characteristics of the casts depend more on attributes of the precipitated intermetallic phases during solidification than the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. E.J. Lavernia, J.D. Ayers, T.S. Srivatsan, Int. Mater. Rev. 37, 1 (1992)

    Article  Google Scholar 

  2. M.F. Ibrahim, G.H. Garza-Elizondo, A.M. Samuel et al., Int. J. Metalcast. (2016). doi:10.1007/s40962-016-0038-2

    Google Scholar 

  3. E. Druschitz, R. D. Foley, J. A. Griffin, Transactions of the American Foundry Society, in 117th Annual Metalcasting Congress, Paper No. 13-1568, P231-241, (AFS Online Library 20130163)

  4. P. Ashtari, G. Birsan, A. Khalaf et al., Int. J. Metalcast. (2011). doi:10.1007/BF03355471

    Google Scholar 

  5. M.D. David, R.D. Foley, J.A. Griffin et al., Int. J. Metalcast. (2016). doi:10.1007/s40962-015-0006-2

    Google Scholar 

  6. H. Akhyar, Husaini. Int. J. Metalcast. (2016). doi:10.1007/s40962-016-0024-8

    Google Scholar 

  7. J. Zhao, C. Xu, G. Dai, S. Wu, J. Han, Mater. Lett. 173, 22 (2016)

    Article  Google Scholar 

  8. X. Su, G.M. Xu, D.H. Jiang, Rare Met. 34, 546 (2015)

    Article  Google Scholar 

  9. Z. Shao, Q. Le, Z. Zhang, J. Cui, Mater. Des. 32, 4216 (2011)

    Article  Google Scholar 

  10. E. Acer, E. Çadırlı, H. Erol, M. Gündüz, Metall. Mater. Trans. A 47, 3040 (2016)

    Article  Google Scholar 

  11. R.R. Mishra, A.K. Sharma, Crit. Rev. Solid State Mater. Sci. 41, 217 (2016)

    Article  Google Scholar 

  12. C. Leonelli, P. Veronesi, L. Denti, A. Gatto, L. Iuliano, J. Mater. Process. Technol. 205, 489 (2008)

    Article  Google Scholar 

  13. K. Rajkumar, S. Aravindan, J. Mater. Process. Technol. 209, 5601 (2009)

    Article  Google Scholar 

  14. M. Gupta, W.L.E. Wong, Scr. Mater. 52, 479 (2005)

    Article  Google Scholar 

  15. A. Mondal, D. Agrawal, A. Upadhyaya, J. Microw. Power Electromagn. Energy. 44, 28 (2010)

    Article  Google Scholar 

  16. M.M. Mahmoud, G. Link, M. Thumm, J. Alloys Compd. 627, 231 (2015)

    Article  Google Scholar 

  17. R. Roy, D. Agrawal, J. Cheng, S. Gedevanishvili, Nature 399, 668 (1999)

    Article  Google Scholar 

  18. D. Demirskyi, D. Agrawal, A. Ragulya, J. Alloys Compd. 509, 1790 (2011)

    Article  Google Scholar 

  19. M.S. Srinath, A.K. Sharma, P. Kumar, Mater. Des. 32, 2685 (2011)

    Article  Google Scholar 

  20. A. Bansal, A.K. Sharma, P. Kumar, S. Das, Mater. Charact. 91, 34 (2014)

    Article  Google Scholar 

  21. S. Zafar, A.K. Sharma, Mater. Charact. 96, 241 (2014)

    Article  Google Scholar 

  22. D. Gupta, A.K. Sharma, Surf. Coat. Technol. 205, 5147 (2011)

    Article  Google Scholar 

  23. D. Agrawal, Mater. Res. Innov. 14, 3 (2010)

    Article  Google Scholar 

  24. S. Chandrasekaran, T. Basak, S. Ramanathan, J. Mater. Process. Technol. 211, 482 (2011)

    Article  Google Scholar 

  25. A.F. Moore, D.E. Schechter, M.S. Morrow, U.S. Patent No. 7,011,136. Washington, DC: U.S. Patent and Trademark Office, 2006

  26. E.B. Ripley, J.A. Oberhaus, Ind. Heat. 72, 61 (2005)

    Google Scholar 

  27. R.R. Mishra, A.K. Sharma, Mater. Des. 112, 97 (2016)

    Article  Google Scholar 

  28. R.R. Mishra, A.K. Sharma, Appl. Therm. Eng. 111, 660 (2017)

    Article  Google Scholar 

  29. R.R. Mishra, A.K. Sharma, Mater. Sci. Eng., A 688, 532 (2017)

    Article  Google Scholar 

  30. S. Singh, D. Gupta, V. Jain, Mater. Des. 111, 51 (2016)

    Article  Google Scholar 

  31. R.R. Mishra, A.K. Sharma, Compos. Part A: Appl. Sci. Manuf. 81, 78 (2016)

    Article  Google Scholar 

  32. R.R. Mishra, A.K. Sharma, Mater. Des. 131, 428 (2017)

    Article  Google Scholar 

  33. J.R. Davis, in Aluminum and Aluminum Alloys, ed. by J.R. Davis (ASM international, Russell Township, 1993), p. 93

    Google Scholar 

  34. D.G. Eskin, L. Katgerman, Prog. Mater Sci. 49, 629 (2004)

    Article  Google Scholar 

  35. W. Kasprzak, M. Sahoo, J. Sokolowski, H. Yamagata, H. Kurita, Int. J. Metalcast. 3, 55 (2009)

    Article  Google Scholar 

  36. J.T. Liu, Y.A. Zhang, X.W. Li, Z.H. Li, B.Q. Xiong, J.S. Zhang, Rare Met. 35, 380 (2016)

    Article  Google Scholar 

  37. R. Orozco, J. Genesca, J. Juarez-Islas, J. Mater. Engg. Perform. 16, 229 (2007)

    Article  Google Scholar 

  38. S.H. Wang, L.G. Meng, S.J. Yang, C.F. Fang, H.A.O. Hai, S.L. Dai, X.G. Zhang, T. Nonferr, Metal Soc. 21, 1449 (2011)

    Google Scholar 

  39. L. Litynska-Dobrzynska, J. Dutkiewicz, W. Maziarz, A. Góral, Mater. Trans. 52, 309 (2011)

    Article  Google Scholar 

  40. C.H. Fan, Z.H. Chen, W.Q. He, J.H. Chen, D. Chen, J. Alloys compd. 504, L42 (2010)

    Article  Google Scholar 

  41. N.A. Belov, D.G. Eskin, A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, 1st edn. (Elsevier, London, 2005), pp. 1–6

    Book  Google Scholar 

  42. K. Liu, X. Cao, X.G. Chen, Metall. Mater. Trans. A 42, 2004 (2011)

    Article  Google Scholar 

  43. A. Deschamps, Y. Brechet, F. Livet, Mater. Sci. Technol. 15, 993 (1999)

    Article  Google Scholar 

  44. E.O. Hall, Proc. Phys. Soc. Lond., Sect. B 64, 747 (1951)

    Article  Google Scholar 

  45. D. Srinivasan, R. Corderman, P.R. Subramanian, Mater. Sci. Eng., A 416, 211 (2006)

    Article  Google Scholar 

  46. J.K. Park, A.J. Ardell, Metall. Trans. A 14, 1957 (1983)

    Article  Google Scholar 

  47. U.A. Curle, L.A. Cornish, G. Govender, Mater. Des. 99, 211 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurbba Kumar Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.R., Sharma, A.K. Effect of Solidification Environment on Microstructure and Indentation Hardness of Al–Zn–Mg Alloy Casts Developed Using Microwave Heating. Inter Metalcast 12, 370–382 (2018). https://doi.org/10.1007/s40962-017-0176-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-017-0176-1

Keywords

Navigation