Skip to main content

Advertisement

Log in

Platelet Concentrates as Biomaterials in Tissue Engineering: a Review

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Background

Tissue engineering is a branch of medical science research that involves application of biomaterials, to functionally restore and regenerate hard or soft tissue defects of various pathologies and trauma. Biomaterial is a substance, engineered either naturally or artificially, that interacts with the host tissue and produces a desirable outcome. Presently, contending technologies are employed to achieve cost-effective biomaterials. This study aimed to review the applications of platelet concentrates (PCs) as a biomaterial in tissue engineering especially in the field of dentistry and regenerative medicine.

Methods

This review summarizes different types of platelet concentrates (PCs), preparation, biomaterial properties, and applications on stem cell–based therapy.

Results

PCs are fibrin matrix with entrapped platelets and leukocytes that appear as fabricated 3D biomaterials. These naturally derived biomaterials consist of cocktails of growth factors such as platelet-derived growth factor, transforming growth factor beta, vascular endothelial growth factor, epidermal growth factor, insulin-like growth factor-1, and cytokines and chemokines along with fractionated proteins. Hence, they enhance proliferation, migration, angiogenesis, osteogenesis, and chondrogenesis of various types of stem cells.

Conclusion

PCs are easily prepared blood-derived 3D-biomaterials, enriched with numerous growth factors and cytokines. Also they are biocompatible, biodegradable, economical, and autologous with multi-lineage potential, hence advantageous over other synthetic biomaterials. Thus, deeper understanding about the biological potential of PCs provides a new perspective on future direction.

Lay Summary

Tissue engineering is an interdisciplinary approach that involves the use of various methods of engineering as well as life sciences to restore, retain or augment tissue function through application of biomaterials or scaffolds. In this field, biomaterials play crucial role. Use of biomaterials of natural origin such as platelet concentrates are the current trend, since it is autologous, cost effective, non-toxic, biodegradable and easily prepared. Platelet concentrates can be an excellent biomaterial of choice for tissue regeneration and stem cell based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gleadall A, Visscher D, Yang J, Thomas D, Segal J. Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance. Burns Trauma. 2018;6:1–19.

    Google Scholar 

  2. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:1–19.

    Google Scholar 

  3. Miron RJ, Fujioka-Kobayashi M, Bishara M, Zhang Y, Hernandez M, Choukroun J. Platelet-rich fibrin and soft tissue wound healing: a systematic review. Tissue Eng Part B Rev. 2017;23:83–99.

    Google Scholar 

  4. Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105(Suppl 1):S13–33.

    CAS  Google Scholar 

  5. Tsujino T, Masuki H, Nakamura M, Isobe K, Kawabata H, Aizawa H, et al. Striking differences in platelet distribution between advanced-platelet-rich fibrin and concentrated growth factors: effects of silica-containing plastic tubes. J Funct Biomater. 2019;10:43.

    CAS  Google Scholar 

  6. Williams DF. Specifications for innovative, enabling biomaterials based on the principles of biocompatibility mechanisms. Front Bioeng Biotechnol. 2019;9(7):255.

    Google Scholar 

  7. Mariani E, Lisignoli G, Borzì RM, Pulsatelli L. Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci. 2019;20:636.

    CAS  Google Scholar 

  8. Hortensius RA, Harley BA. Naturally derived biomaterials for addressing inflammation in tissue regeneration. Exp Biol Med (Maywood). 2016;241:1015–24.

    CAS  Google Scholar 

  9. Maia FR, Lourenco AH, Granja PL, Goncalves RM, Barrias CC. Effect of cell density on mesenchymal stem cells aggregation in RGD-alginate 3D matrices under osteoinductive conditions. Macromol Biosci. 2014;14:759–71.

    CAS  Google Scholar 

  10. Liu X, Peng W, Wang Y, Zhu M, Sun T, Peng Q, et al. Synthesis of an RGD-grafted oxidized sodium alginate-N-succinyl chitosan hydrogel and an in vitro study of endothelial and osteogenic differentiation. J Mater Chem B. 2013;1:4484–92.

    CAS  Google Scholar 

  11. Adelow C, Segura T, Hubbell J, Frey P. The effect of enzymatically degradable poly (ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials. 2008;29:314–26.

    Google Scholar 

  12. Hokugo A, Takamoto T, Tabata Y. Preparation of hybrid scaffold fromfibrin and biodegradable polymer fiber. Biomaterials. 2006;27:61–7.

    CAS  Google Scholar 

  13. Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials. 2003;24:5163–71.

    CAS  Google Scholar 

  14. Munirah S, Kim SH, Ruszymah BHI, Khang G. The use of fibrin and poly (lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis. Eur Cells Mater. 2008;15:41–52.

    CAS  Google Scholar 

  15. He L, Liu B, Xipeng G, Xie G, Liao S, Quan D, et al. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. Eur Cell Mater. 2009;18:63–74.

    CAS  Google Scholar 

  16. Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–33.

    CAS  Google Scholar 

  17. Parisi L, Toffoli A, Ghiacci G, Macaluso GM. Tailoring the Interface of Biomaterials to Design Effective Scaffolds. J Funct Biomater. 2018;21(9):50.

    Google Scholar 

  18. Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168.

    CAS  Google Scholar 

  19. Browning R, Weiser AM, Woolf N, Golish SR, San Giovanni TP, Scuderi GJ, et al. Platelet-rich plasma increases matrix metalloproteinases in cultures of human synovial fibroblasts. J Bone Joint Surg Am. 2012;94:e1721–7.

    Google Scholar 

  20. Ahmed AK, Haylor JL, El Nahas AM, Johnson TS. Localization of matrix metalloproteinases and their inhibitors in experimental progressive kidney scarring. Kidney Int. 2007;71:755–63.

    CAS  Google Scholar 

  21. Frank GL, Amir AAM, Stephen MK, Mary ET, Ciara MM, Garry PD, et al. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials. 2010;31:9232–43.

    Google Scholar 

  22. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a bio-logical scaffold material: structure and function. Acta Biomater. 2009;5:1–13.

    CAS  Google Scholar 

  23. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues--state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12:107–24.

    CAS  Google Scholar 

  24. Wagoner JAJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011;7:16–30.

    Google Scholar 

  25. Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology. 2016;68:355–69.

    Google Scholar 

  26. Murphy CM, Haugh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–6.

    CAS  Google Scholar 

  27. Hollister SJ. Scaffold engineering: a bridge to where? Biofabrication. 2009;1:012001.

    Google Scholar 

  28. Hosoyama K, Lazurko C, Muñoz M, McTiernan CD, Alarcon EI. Peptide-based functional biomaterials for soft-tissue repair. Front Bioeng Biotechnol. 2019;7:205.

    Google Scholar 

  29. Kim DH, Je YJ, Kim CD, Lee YH, Seo YJ, Lee JH, et al. Can platelet-rich plasma be used for skin rejuvenation? Evaluation of effects of platelet-rich plasma on human dermal fibroblast. Ann Dermatol. 2011;23:424–31.

    CAS  Google Scholar 

  30. Kingsley CS. Blood coagulation; evidence of an antagonist to factor VI in platelet-rich human plasma. Nature. 1954;173:723–4.

    CAS  Google Scholar 

  31. Soffer E, Ouhayoun JP, Anagnostou F. Fibrin sealants and platelet preparations in bone and periodontal healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95:521–8.

    Google Scholar 

  32. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:638–46.

    CAS  Google Scholar 

  33. Choukroun J. Advanced PRF and i-PRF: platelet concentrate or blood concentrate? J Periodontal Med Clin Pract. 2014;1:3.

    Google Scholar 

  34. Everts PA, van Zundert A, Schönberger JP, Devilee RJ, Knape JT. What do we use: platelet-rich plasma or platelet leukocyte gel? J Biomed Mater Res A. 2008;85:1135–6.

    Google Scholar 

  35. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure plateletrich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27:158–67.

    CAS  Google Scholar 

  36. Mishra A, Harmon K, Woodall J, Vieira A. Sports medicine applications of platelet rich plasma. Curr Pharm Biotechnol. 2012;13:1185–95.

    CAS  Google Scholar 

  37. Tunali M, Özdemir H, Küçükodacı Z, Akman S, Fıratlı E. In vivo evaluation of titanium-prepared platelet-rich fibrin (TPRF): a new platelet concentrate. Br J Oral Maxillofac Surg. 2013;51:438–43.

    Google Scholar 

  38. Mourão CF, Valiense H, Melo ER, Mourão NB, Maia MD. Obtention of injectable platelets rich-fibrin (i-PRF) and its polymerization with bone graft: technical note. Rev Col Bras Cir. 2015;42:421–3.

    Google Scholar 

  39. Fujioka-Kobayashi M, Miron RJ, Hernandez M, Kandalam U, Zhang Y, Choukroun J. Optimized platelet-rich fibrin with the low-speed concept: growth factor release, biocompatibility, and cellular response. J Periodontol. 2017;88:112–21.

    CAS  Google Scholar 

  40. Pardis H, Hooman K, Saeed R, Ali Dehghani N, Parisa B. Comparative evaluation of conventional and nanosilver-containing leucocyte and platelet-rich fibrin/biomaterial in the anti-biofilm formation of standard species of Candida and Streptococcus. Jundishapur J Microbiol. 2018;11:e68423.

    Google Scholar 

  41. Ghanaati S, Booms P, Orlowska A, Kubesch A, Lorenz J, Rutkowski J, et al. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol. 2014;40:679–89.

    Google Scholar 

  42. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181:1232–44.

    CAS  Google Scholar 

  43. Chatterjee A, Debnath K, Ali MM, Babu C, Gowda PL. Comparative histologic evaluation of titanium platelet-rich fibrin and platelet-rich fibrin in hypertensive and smoker participants: a cell cytology study. J Indian Soc Periodontol. 2017;21:195–200.

    Google Scholar 

  44. Chakravarthi S. Platelet rich fibrin in the management of established dry socket. J Korean Assoc Oral Maxillofac Surg. 2017;43:160–5.

    Google Scholar 

  45. Albala DM. Fibrin sealants in clinical practice. Cardiovasc Surg. 2003;11:5–11.

    Google Scholar 

  46. Avanzini MA, Bernardo ME, Cometa AM, Perotti C, Zaffaroni N, Novara F, et al. Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord bloodand bone marrow-derived progenitors. Haematologica. 2009;94:1649–60.

    CAS  Google Scholar 

  47. Kawamura M, Sawafuji M, Watanabe M, Horinouchi H, Kobayashi K. Frequency of transmission of human parvovirus B19 infection by fibrin sealant used during thoracic surgery. Ann Thorac Surg. 2002;73:1098–100.

    Google Scholar 

  48. Joch C. The safety of fibrin sealants. Cardiovasc Surg. 2003;11:23–8.

    Google Scholar 

  49. Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol. 2005;205:228–36.

    CAS  Google Scholar 

  50. Aulino P, Costa A, Chiaravalloti E, Perniconi B, Adamo S, Coletti D, et al. Muscle extracellular matrix scaffold is a multipotent environment. Int J Med Sci. 2015;12:336–40.

    CAS  Google Scholar 

  51. Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH. Macrophages in skin injury and repair. Immunobiology. 2011;216:753–62.

    Google Scholar 

  52. Escoda Francoli J, Sanchez-Garces MA, Gimeno-Sandig A, Munoz-Guzon F, Barbany-Cairo JR, Badiella-Busquets L. Guided bone regeneration using beta-tricalcium phosphate with and without fibronectin; an experimental study in rats. Clin Oral Implants Res. 2018;29:1038–49.

    Google Scholar 

  53. Anitua E, Muruzabal F, Orive G. Antimicrobial properties of plasma rich in growth factors (Prgf-Endor-Est). Science against microbial pathogens. A. In: Méndez-Vilas, editor. Formatex; 2011. p. 414–21.

    Google Scholar 

  54. Shariati A, Moradabadi A, Azimi T, Ghaznavi-Rad E. Wound healing properties and antimicrobial activity of platelet-derived biomaterials. Sci Rep. 2020;10:1032.

    CAS  Google Scholar 

  55. Darouiche RO. Treatment of infections associated with surgical implants. NEngl JMed. 2004;350:1422–9.

    CAS  Google Scholar 

  56. Jasmine S, Annamalai T, Janarthanan K, Krishnamoorthy R, Alshatwi AA. Antimicrobial and antibiofilm potential of injectable platelet rich fibrin-a second-generation platelet concentrate-against biofilm producing oral staphylococcus isolates. Saudi J Biol Sci. 2020;27:41–6.

    CAS  Google Scholar 

  57. Lorenzo D, Monica B, Christian V, Carlo LR, Silvio T, Massimo DF. Plasma components and platelet activation are essential for the antimicrobial properties of autologous platelet-rich plasma: an in vitro study. PLoS One. 2014;9:e107813.

    Google Scholar 

  58. Khalafi RS, Bradford DW, Wilson MG. Topical application of autologous blood products during surgical closure following a coronary artery bypass graft. Eur J Cardiothorac Surg. 2008;34:360–4.

    Google Scholar 

  59. Yang KC, Wang CH, Chang HH, Chan WP, Chi CH, Kuo TF. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med. 2012;6:777–85.

    CAS  Google Scholar 

  60. Clémence T, Marc M, Christophe C, Thierry T, Pascal R, Sophie G, et al. Organic glues or fibrin glues from pooled plasma: efficacy, safety and potential as scaffold delivery systems. J Pharm Pharmaceut Sci. 2012;15:124–40.

    Google Scholar 

  61. Shiga Y, Kubota G, Orita S, Inage K, Kamoda H, Yamashita M, et al. Freeze-dried human platelet-rich plasma retains activation and growth factor expression after an eight-week preservation period. Asian Spine J. 2017;11:329–36.

    Google Scholar 

  62. Herrmann M, Binder A, Menzel U, Zeiter S, Alini M, Verrier S. CD34/CD133 enriched bone marrow progenitor cells promote neovascularization of tissue engineered constructs in vivo. Stem Cell Res. 2014;13:465–77.

    CAS  Google Scholar 

  63. Bernardi M, Albiero E, Alghisi A, Chieregato K, Lievore C, Madeo D, et al. Production of human platelet lysate by use of ultrasound for ex vivo expansion of human bone marrow-derived mesenchymal stromal cells. Cytotherapy. 2013;15:920–9.

    CAS  Google Scholar 

  64. Albanese A, Licata ME, Polizzi B, Campisi G. Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immun Ageing. 2013;13(10):23.

    Google Scholar 

  65. Landesberg R, Glickman RS, Ray M. Quantification of growth factor levels using a simplified method of platelet rich plasma gel preparation. J Oral Maxillofac Surg. 2002;58:297–300.

    Google Scholar 

  66. Choukroun J, Adda F, Schoeffler C, Vervelle A. Une opportunité en paro-implantologie: Le PRF. Implantodontie. 2001;42:55–62.

    Google Scholar 

  67. Garcia-Martinez O, Reyes-Botella C, Diaz-Rodriguez L, EDe Luna B, Ramos Torrecillas B, Vallecillo Capilla MF, et al. Effect of platelet-rich plasma on growth and antigenic profile of human osteoblasts and its clinical impact. Journal of oral and maxillofacial surgery. J Am Assoc Oral Maxillof Surg. 2012;70:1558–64.

    Google Scholar 

  68. Sameem M, Wood TJ, Bain JR. A systematic review on the use of fibrin glue for peripheral nerve repair. Plast Reconstr Surg. 2011;127:2381–90.

    CAS  Google Scholar 

  69. Rousou J, Levitsky S, Gonzalez-Lavin L, Cosgrove D, Magilligan D, Weldon C, et al. Randomized clinical trial of fibrin sealant in patients undergoing resternotomy or reoperation after cardiac operations. A multicenter study. J Thorac Cardiovasc Surg. 1989;97:194–203.

    CAS  Google Scholar 

  70. Cakmak O, Babakurban ST, Akkuzu HG, Bilgi S, Ovalı E, Kongur M, et al. Injectable tissue-engineered cartilage using commercially available fibrin glue. Laryngoscope. 2013;123:2986–92.

    CAS  Google Scholar 

  71. Brown DM, Barton BR, Young VL, Pruitt BA. Decreased wound contraction with fibrin glue-treated skin grafts. Arch Surg. 1992;127:404–6.

    CAS  Google Scholar 

  72. René HF, Alexander HPP, Karl SG, Heinz R. Use of fibrin sealant (Tisseel/Tissucol) in hernia repair: a systematic review. Surg Endosc. 2012;26:1803–12.

    Google Scholar 

  73. Tavares K, Mayo J, Bogenberger K, Davis SS Jr, Yheulon C. Fibrin versus cyanoacrylate glue for fixation in laparoscopic inguinal hernia repair: a network meta-analysis and indirect comparison. Hernia. 2019;10:1007.

    Google Scholar 

  74. Lee JC, Lee SY, Min HJ, et al. Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng A. 2012;18:19–20.

    CAS  Google Scholar 

  75. Ehrbar M, Metters A, Zammaretti P, Hubbell JA, Zisch AH. Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release. 2005;101:93–109.

    CAS  Google Scholar 

  76. Tiago MF, Cristina B, Costanza E, Paul A, De B, Giordano P. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications. Sci Rep. 2016;6:25326.

    Google Scholar 

  77. Abuarqoub DA, Aslam N, Barham RB, et al. The effect of platelet lysate in culture of PDLSCs: an in vitro comparative study. PeerJ. 2019;7:e7465.8.

    Google Scholar 

  78. Kanno T, Takahashi T. Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J Oral Maxillofac Surg. 2005;63:362–9.

    Google Scholar 

  79. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    CAS  Google Scholar 

  80. Chawla S. Split face comparative study of micro needling with PRP in treating atropic post acne scars. J Cutan Aesthet Surg. 2014;7:209.

    Google Scholar 

  81. Zhu X, Lee L, Jackson J, Tong Y, Wang C. Characterization of porous poly (D, L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Biotechnol Bioeng. 2008;100:998–1009.

    CAS  Google Scholar 

  82. Blum IR. Contemporary views on dry socket (alveolar osteitis): a clinical appraisal of standardization, aetiopathogenesis andmanagement: a critical review. Int J Oral Maxillofac Surg. 2002;31:309–17.

    CAS  Google Scholar 

  83. Vezeau PJ. Dental extraction wound management: Medicating postextraction sockets. J Oral Maxillofac Surg. 2000;58:531–7.

    CAS  Google Scholar 

  84. Anwandter A, Bohmann S, Nally M, Castro AB, Quirynen M, Pinto N. Dimensional changes of the post extraction alveolar ridge, preserved with leukocyte- and platelet rich fibrin: a clinical pilot study. J Dent. 2016;52:23–9.

    Google Scholar 

  85. Woo SM, Kim WJ, Lim HS, Choi NK, Kim SH, Kim SM, et al. Combination of mineral trioxide aggregate and platelet-rich fibrin promotes the odontoblastic differentiation and mineralization of human dental pulp cells via BMP/Smad signaling pathway. J Endod. 2016;42:82–8.

    Google Scholar 

  86. Hoaglin DR, Lines GK. Prevention of localized osteitis in mandibular third-molar sites using platelet-rich fibrin. Int J Dent. 2013;875380.

  87. Borie E, Oliví DG, Orsi IA, Garlet K, Weber B, Beltrán V, et al. Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med. 2015;8:7922–9.

    Google Scholar 

  88. Inchingolo F, Tatullo M, Marrelli M, Inchingolo AM, Scacco S, Inchingolo AD, et al. Trial with platelet-rich fibrin and Bio-Oss used as grafting materials in the treatment of the severe maxillar bone atrophy: clinical and radiological evaluations. Eur Rev Med Pharmacol Sci. 2010;14:1075–84.

    CAS  Google Scholar 

  89. Bilimoria R, Young H, Patel D, Kwok J. The role of piezoelectric surgery and platelet-rich fibrin in treatment of ORN and MRONJ: a clinical case series. Oral Surg. 2018;11:136–43.

    Google Scholar 

  90. Zhang Z, Li X, Zhao J, Jia W, Wang Z. Effect of autogenous growth factors released from platelet concentrates on the osteogenic differentiation of periodontal ligament fibroblasts: a comparative study. PeerJ. 2019;7:e7984.

    Google Scholar 

  91. Naik B, Karunakar P, Jayadev M, Marshal VR. Role of platelet rich fibrin in wound healing: a critical review. J Conserv Dent. 2013;16:284–93.

    CAS  Google Scholar 

  92. Jin Woo K, Sun Jong K, Myung RK. Leucocyte-rich and platelet-rich fibrin for the treatment of bisphosphonate-related osteonecrosis of the jaw: a prospective feasibility study. Br J Oral Maxillofac Surg. 2014;52:854–9.

    Google Scholar 

  93. Ozgul O, Senses F, Er N, Tekin U, Tuz HH, Alkan A, et al. Efficacy of platelet rich fibrin in the reduction of the pain and swelling after impacted third molar surgery: randomized multicenter split-mouth clinical trial. Head Face Med. 2015;11:37.

    Google Scholar 

  94. Del Corso M, Vervelle A, Simonpieri A, et al. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 1: periodontal and dentoalveolar surgery. Curr Pharm Biotechnol. 2012;13:1207–30.

    Google Scholar 

  95. Narang I, Mittal N, Mishra NA. Comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: a clinical study. Contemp Clin Dent. 2015;6:63–8.

    Google Scholar 

  96. Huang FM, Yang SF, Zhao JH, Chang YC. Platelet-rich fibrin increases proliferation and differentiation of human dental pulp cells. J Endod. 2010;36:1628–32.

    Google Scholar 

  97. Liao HT, Marra KG, Rubin JP. Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Eng Part B Rev. 2014;20:267–76.

    CAS  Google Scholar 

  98. Chignon-Sicard B, Georgiou CA, Fontas E, David S, Dumas P, Ihrai T, et al. Efficacy of leukocyte- and plateletrich fibrin in wound healing: a randomized controlled clinical trial. Plast Reconstr Surg. 2012;130:819e–29e.

    CAS  Google Scholar 

  99. Yu P, Zhai Z, Jin X, Yang X, Qi Z. Clinical application of platelet-rich fibrin in plastic and reconstructive surgery: a systematic review. Aesth Plast Surg. 2018;42:511–9.

    Google Scholar 

  100. Sumida R, Maeda T, Kawahara I, Yusa J, Kato Y. Platelet-rich fibrin increases the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio in osteoblasts. Exp Ther Med. 2019;18:358–65.

    CAS  Google Scholar 

  101. Navarro LB, Barchiki F, Navarro JW, et al. Assessment of platelet-rich fibrin in the maintenance and recovery of cell viability of the periodontal ligament. Sci Rep. 2019;9:19476.

    CAS  Google Scholar 

  102. Wang X, Yang Y, Zhang Y, Miron RJ. Fluid platelet-rich fibrin stimulates greater dermal skin fibroblast cell migration, proliferation, and collagen synthesis when compared to platelet-rich plasma. J Cosmet Dermatol. 2019;18:2004–10.

    Google Scholar 

  103. Strauss FJ, Nasirzade J, Kargarpoor Z, Stähli A, Gruber R. Effect of platelet-rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: a systematic review of in vitro studies. Clin Oral Investig. 2020;24:569–84.

    Google Scholar 

  104. Chang IC, Tsai CH, Chang YC. Platelet-rich fibrin modulates the expression of extracellular signal-regulated protein kinase and osteoprotegerin in human osteoblasts. J Biomed Mater Res A. 2010;95:327–32.

    Google Scholar 

  105. Wang Z, Han L, Sun T, Wang W, Li X, Wu B. Preparation and effect of lyophilized platelet-rich fibrin on the osteogenic potential of bone marrow mesenchymal stem cells in vitro and in vivo. Heliyon. 2019;5:e02739.

    Google Scholar 

  106. Rozario T, DeSimone DW, et al. Dev Biol. 2010;341:126–40.

    CAS  Google Scholar 

  107. Kobayashi E, Flückiger L, Fujioka-Kobayashi M, Sawada K, Sculean A, Schaller B, et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig. 2016;20:2353–60.

    Google Scholar 

  108. Walid AA. Evaluation of bone regenerative capacity in rats claverial bone defect using platelet rich fibrin with and without beta tri calcium phosphate bone graft material. Saudi Dent J. 2016;28:109–17.

    Google Scholar 

  109. Bruekers SM. Jaspers M, Hendriks JM, Kurniawan NA, Koenderink GH, Kouwe, P H, Huck TSW. Fibrin-fiber architecture influences cell spreading and differentiation. Cell Adhes Migr. 2016;10:495–504.

    CAS  Google Scholar 

  110. Kobayashi M, Kawase T, Okuda K, Wolff LF, Yoshie H. In vitro immunological and biological evaluations of the angiogenic potential of platelet-rich fibrin preparations: a standardized comparison with PRP preparations. Int J Implant Dent. 2015;1:31.

    Google Scholar 

  111. Ramaswamy Reddy SH, Reddy R, Babu NC, Ashok GN. Stem-cell therapy and platelet-rich plasma in regenerative medicines: a review on pros and cons of the technologies. J Oral Maxillofac Pathol. 2018;22:367–74.

    Google Scholar 

  112. Xie X, Zhang C, Tuan RS. Biology of platelet-rich plasma and its clinical application in cartilage repair. Arthritis Res Ther. 2014;16:204.

    Google Scholar 

  113. Lu HH, Vo JM, Chin HS, Lin J, Cozin M, Tsay R, et al. Controlled delivery of platelet-rich plasma-derived growth factors for bone formation. J Biomed Mater Res A. 2008;86:1128–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SJ: manuscript writing, conception, design, and final approval of manuscript; AT: manuscript writing and corrections; KR: manuscript writing; and AA: manuscript writing.

Corresponding author

Correspondence to Sharmila Jasmine.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

Ethical approval is not applicable to this article as no data were generated from human/animal during the current study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasmine, S., Thangavelu, A., Krishnamoorthy, R. et al. Platelet Concentrates as Biomaterials in Tissue Engineering: a Review. Regen. Eng. Transl. Med. 7, 419–431 (2021). https://doi.org/10.1007/s40883-020-00165-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-020-00165-z

Keywords

Navigation