Skip to main content
Log in

Acute Salivary Steroid Hormone Responses in Juvenile Boys and Girls to Non-physical Team Competition

  • ORIGINAL ARTICLE
  • Published:
Adaptive Human Behavior and Physiology Aims and scope Submit manuscript

Abstract

Objectives

Little psychoneuroendocrine research has focused on steroid hormone responses to non-physical competition in middle childhood. This study sought to observe testosterone, estradiol, dehydroepiandrosterone (DHEA), androstenedione, and cortisol responses in children during a mixed-sex, team, academic competition.

Methods

Salivary steroid hormones were collected, along with measures of performance, Body Mass Index, and pubertal development in ethnically Chinese boys (n = 18) and girls (n = 27), aged 9–10 years, during a math competition (N = 45).

Results

Testosterone and estradiol levels were generally low and unmeasurable. Nearly every competitor experienced decreases in cortisol and cortisol/DHEA molar ratio. Pre- and post-match DHEA and androstenedione did not significantly change. Exploratory analyses revealed a positive correlation between DHEA change and team performance among non-active participants (i.e. did not attempt to answer a question). ANCOVAs revealed differences in percentage change in androstenedione between active (n = 20) and non-active participants (n = 25) and among winners (n = 7) and losers (n = 38), and positive associations with age. Percentage change in cortisol was significantly lower among losers compared to winners. Performance measures were positively correlated with DHEA change and percentage change in androstenedione.

Conclusions

Despite girls having higher pre-match androstenedione, both sexes exhibited similar patterned hormone responses. Only cortisol and cortisol/DHEA molar ratio decreased during the competition. However, DHEA, androstenedione, and cortisol match changes were partially related to psychosocial variables (e.g., performance, outcome, participation). These findings provide new insight into factors which may underpin steroid hormone responses during middle childhood non-athletic competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aizawa, K., Nakahori, C., Akimoto, T., Kimura, F., Hayashi, K., Kono, I., & Mesaki, N. (2006). Changes of pituitary, adrenal and gonadal hormones during competition among female soccer players. Journal of Sports Medicine and Physical Fitness, 46, 322–327.

    Google Scholar 

  • Büttler, R. M., Martens, F., Fanelli, F., Pham, H. T., Kushnir, M. M., Janssen, M. J. W., Owen, L., Taylor, A. E., Soeborg, T., Blankenstein, M. A., & Heijboer, A. C. (2015). Comparison of 7 published LC-MS/MS methods for the simultaneous measurement of testosterone, androstenedione, and Dehydroepiandrosterone in serum. Clinical Chemistry, 61, 1475–1483.

    Article  Google Scholar 

  • Campbell, B. (2011). Adrenarche in comparative perspective. American Journal of Human Biology, 23, 44–52.

    Article  Google Scholar 

  • Capranica, L., Lupo, C., Cortis, C., Chiodo, S., Cibelli, G., & Tessitore, A. (2012). Salivary cortisol and alpha-amylase reactivity to taekwondo competition in children. European Journal of Applied Physiology, 112, 647–652.

    Article  Google Scholar 

  • Cashdan, E. (1998). Are men more competitive than women? British Journal of Social Psychology, 37(Pt 2), 213–229.

    Article  Google Scholar 

  • Cashdan, E. (2003). Hormones and competitive aggression in women. Aggressive Behavior, 29, 107–115.

    Article  Google Scholar 

  • Casto, K. V., & Edwards, D. A. (2016a). Before, during, and after: How phases of competition differentially affect testosterone, cortisol, and estradiol levels in women athletes. Adaptive Human Behavior and Physiology, 2, 11–25.

    Article  Google Scholar 

  • Casto, K. V., & Edwards, D. A. (2016b). Testosterone, cortisol, and human competition. Hormones and Behavior, 82, 21–37.

    Article  Google Scholar 

  • Casto, K. V., & Prasad, S. (2017). Recommendations for the study of women in hormones and competition research. Hormones and Behavior, 92, 190–194.

    Article  Google Scholar 

  • Chou, B. K. P. (2012). The paradox of educational quality and education policy in Hong Kong and Macau: a postcolonial perspective. Chinese Education and Society, 45, 96–110.

    Article  Google Scholar 

  • Collomp, K., Buisson, C., Lasne, F., & Collomp, R. (2015). DHEA, physical exercise and doping. The Journal of Steroid Biochemistry and Molecular Biology, 145, 206–212.

    Article  Google Scholar 

  • Crittenden, A.N. (2016). Children’s foraging and play among the Hadza. In: Origins and implications of the evolution of childhood (pp. 155–172). School of Advanced Research (SAR) Series. Albuquerque: University of New Mexico Press.

  • de Almeida, R. M. M., Cabral, J. C. C., & Narvaes, R. (2015). Behavioural, hormonal and neurobiological mechanisms of aggressive behaviour in human and nonhuman primates. Physiology and Behavior, 143, 121–135.

    Article  Google Scholar 

  • Deaner, R. O., & Smith, B. A. (2013). Sex differences in sports across 50 societies. Cross-Cultural Research, 47, 268–309.

    Article  Google Scholar 

  • Del Giudice, M., Angeleri, R., & Manera, V. (2009). The juvenile transition: a developmental switch point in human life history. Developmental Review, 29, 1–31.

    Article  Google Scholar 

  • Del Giudice, M., Gangestad, S.W., Kaplan, H.S. (2015). Life history theory and evolutionary psychology. The handbook of evolutionary psychology, Life History Theory and Evolutionary Psychology.

  • Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355–391.

    Article  Google Scholar 

  • Ellis, B. J. (2004). Timing of pubertal maturation in girls: an integrated life history approach. Psychological Bulletin, 130, 920–958.

    Article  Google Scholar 

  • Flinn, M. V., Ponzi, D., & Muehlenbein, M. P. (2012). Hormonal mechanisms for regulation of aggression in human coalitions. Journal of Human Nature, 23, 68–88.

    Article  Google Scholar 

  • Gatti, R., & De Palo, E. F. (2011). An update: salivary hormones and physical exercise. Scandinavian Journal of Medicine and Science in Sports, 21, 157–169.

    Article  Google Scholar 

  • Geary, D. C., DeSoto, M. C., Hoard, M. K., Sheldon, M. S., & Cooper, M. L. (2001). Estrogens and relationship jealousy. Journal of Human Nature, 12, 299–320.

    Article  Google Scholar 

  • Geniole, S. N., Bird, B. M., Ruddick, E. L., & Carré, J. M. (2017). Effects of competition outcome on testosterone concentrations in humans: an updated meta-analysis. Hormones and Behavior, 92, 37–50.

    Article  Google Scholar 

  • Gray, P. (2015). Free to learn: Why unleashing the instinct to play will make our children happier, more self-reliant, and better students for life. Basic Books.

  • Gray, P. B., McHale, T. S., & Carré, J. M. (2017). A review of human male field studies of hormones and behavioral reproductive effort. Hormones and Behavior, 91, 52–67.

    Article  Google Scholar 

  • Groschl, M. (2003). Circadian rhythm of salivary cortisol, 17 -Hydroxyprogesterone, and progesterone in healthy children. Clinical Chemistry, 49, 1688–1691.

    Article  Google Scholar 

  • Handelsman, D. J., & Wartofsky, L. (2013). Requirement for mass spectrometry sex steroid assays in the journal of clinical endocrinology and metabolism. The Journal of Clinical Endocrinology and Metabolism, 98, 3971–3973.

    Article  Google Scholar 

  • Hodges-Simeon, C. R., Prall, S. P., Blackwell, A. D., Gurven, M., & Gaulin, S. J. C. (2017). Adrenal maturation, nutritional status, and mucosal immunity in Bolivian youth. American Journal of Human Biology., 29. https://doi.org/10.1002/ajhb.23025.

  • Ingham, M. (2007). Hong Kong: a cultural history. Oxford University Press.

  • Inoff-Germain, G., Arnold, G. S., Nottelmann, E. D., Susman, E. J., Cutler Jr., G. B., & Chrousos, G. P. (1988). Relations between hormone levels and observational measures of aggressive behavior of young adolescents in family interactions. Developmental Psychology, 24, 129–139.

    Article  Google Scholar 

  • Jankowiak, W., Joiner, A., & Khatib, C. (2011). What observation studies can tell us about single child play patterns, gender, and changes in Chinese society. Cross-Cultural Research, 45, 155–177.

    Article  Google Scholar 

  • Kamin, H. S., & Kertes, D. A. (2017). Cortisol and DHEA in development and psychopathology. Hormones and Behavior, 89, 69–85.

    Article  Google Scholar 

  • Konner, M. (2010). The evolution of childhood: Relationships, emotion, mind. Cambridge: Harvard University Press.

    Google Scholar 

  • Kudielka, B. M., Hellhammer, D. H., Kirschbaum, C., Harmon-Jones, E., & Winkielman, P. (2007). Ten years of research with the trier social stress test—Revisited. Social neuroscience: Integrating biological and psychological explanations of social behavior, 56–83.

  • Kushnir, M. M., Blamires, T., Rockwood, A. L., Roberts, W. L., Yue, B., Erdogan, E., Bunker, A. M., & Meikle, A. W. (2010). Liquid chromatography--tandem mass spectrometry assay for androstenedione, dehydroepiandrosterone, and testosterone with pediatric and adult reference intervals. Clinical Chemistry, 56, 1138–1147.

    Article  Google Scholar 

  • Maninger, N., Wolkowitz, O. M., Reus, V. I., Epel, E. S., & Mellon, S. H. (2009). Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Frontiers in Neuroendocrinology, 30(1), 65–91.

    Article  Google Scholar 

  • Mazdarani, F. H., Khaledi, N., & Hedayati, M. (2016). Effects of official basketball competition on the levels of cortisol and salivary immunoglobulin (A) among female children. Journal of Childhood Obesity, 1(3), 1–5.

    Article  Google Scholar 

  • McHale, T. S., Zava, D. T., Hales, D., & Gray, P. B. (2016). Physical competition increases Dehydroepiandrosterone (DHEA) and androstenedione rather than testosterone among juvenile boy soccer players. Adaptive Human Behavior and Physiology, 2, 44–56.

    Article  Google Scholar 

  • McHale, T. S., Chee, W., Chan, K., Zava, D. T., Gray, P. B. (2018a). Coalitional physical competition: acute salivary steroid hormone responses among juvenile male soccer players in Hong Kong. Journal of Human Nature. (in press).

  • McHale, T. S., Gray, P. B., Chan, K., Zava, D. T., & Chee, W. (2018b). Hong Kongese juvenile boys’ salivary steroid hormone responses during a dyadic athletic competition. American Journal of Human Biology. (in press).

  • Mehta, P. H., & Josephs, R. A. (2006). Testosterone change after losing predicts the decision to compete again. Hormones and Behavior, 50, 684–692.

    Article  Google Scholar 

  • Mehta, P. H., & Josephs, R. A. (2010). Testosterone and cortisol jointly regulate dominance: evidence for a dual-hormone hypothesis. Hormones and Behavior, 58(5), 898–906.

    Article  Google Scholar 

  • Mehta, P. H., & Prasad, S. (2015). The dual-hormone hypothesis: a brief review and future research agenda. Current opinion in behavioral sciences, 3, 163–168.

    Article  Google Scholar 

  • Nave, G., Nadler, A., Zava, D., & Camerer, C. (2017). Single-dose testosterone administration impairs cognitive reflection in men. Psychological Science, 28, 1398–1407.

    Article  Google Scholar 

  • Ong, K. K., Potau, N., Petry, C. J., Jones, R., Ness, A. R., Honour, J. W., de Zegher, F., Ibáñez, L., & Dunger, D. B. (2004). Opposing influences of prenatal and postnatal weight gain on adrenarche in normal boys and girls. The Journal of Clinical Endocrinology and Metabolism, 89(6), 2647–2651.

    Article  Google Scholar 

  • Oxford, J., Ponzi, D., & Geary, D. C. (2010). Hormonal responses differ when playing violent video games against an ingroup and outgroup. Evolution and Human Behavior, 31, 201–209.

    Article  Google Scholar 

  • Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: reliability, validity, and initial norms. Journal of Youth and Adolescence, 17, 117–133.

    Article  Google Scholar 

  • Phillipson, S. (2006). Cultural variability in parent and child achievement attributions: a study from Hong Kong. Educational Psychology Review, 26, 625–642.

    Article  Google Scholar 

  • Pluchino, N., Drakopoulos, P., Bianchi-Demicheli, F., Wenger, J. M., Petignat, P., & Genazzani, A. R. (2015). Neurobiology of DHEA and effects on sexuality, mood and cognition. The Journal of Steroid Biochemistry and Molecular Biology, 145, 273–280.

    Article  Google Scholar 

  • Rege, J., & Rainey, W. E. (2012). The steroid metabolome of adrenarche. Journal of Endocrinology, 214, 133–143.

    Article  Google Scholar 

  • Salvador, A., & Costa, R. (2009). Coping with competition: neuroendocrine responses and cognitive variables. Neuroscience & Biobehavioral Reviews, 33, 160–170.

    Article  Google Scholar 

  • Sherman, G. D., Lerner, J. S., Josephs, R. A., Renshon, J., & Gross, J. J. (2016). The interaction of testosterone and cortisol is associated with attained status in male executives. Journal of Personality and Social Psychology, 110(6), 921–929.

    Article  Google Scholar 

  • Stockley, P., & Campbell, A. (2013). Female competition and aggression: interdisciplinary perspectives. Philosophical Transactions of the Royal Society of London, 368, 1–11.

    Google Scholar 

  • Suay, F., Salvador, A., González-Bono, E., Sanchís, C., Martínez, M., Martínez-Sanchis, S., Simón, V. M., & Montoro, J. B. (1999). Effects of competition and its outcome on serum testosterone, cortisol and prolactin. Psychoneuroendocrinology, 24, 551–566.

    Article  Google Scholar 

  • Trumble, B. C., Cummings, D. K., O’Connor, K. A., Holman, D. J., Smith, E. A., Kaplan, H. S., & Gurven, M. D. (2013). Age-independent increases in male salivary testosterone during horticultural activity among Tsimane forager-farmers. Evolution and Human Behavior, 34, 350–357. https://doi.org/10.1016/j.evolhumbehav.2013.06.002.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the students, parents, and school administrators for their participation. In addition, we would like to extend our gratitude to Fiona So, Wesley Lui, Billy Lee, and Ka-yan Cheuk for making the implementation of our study design possible. Special thanks to Timothy Lo and Tommy Liu for their help in data collection, Tony Tong for help in translating the forms, David Kimball for running the hormone assays at ZRT Laboratory and to Sherri Zava, Genevieve Neyland, and Wendy Norris for their continued support. Thank you, Wenner-Gren Foundation, for supplying the funding to facilitate this project.

Funding

This work was supported by a Wenner-Gren dissertation fieldwork grant (#9239).

Author information

Authors and Affiliations

Authors

Contributions

Statistical analysis and crafted the manuscript: McHale.

Study design and implementation: McHale, Gray, Chee.

Data Collection: McHale, Chee, Chan.

Logistical Support: Gray, Zava, Chee, Chan.

Edited the manuscript, provided intellectual content, and critical feedback: McHale, Gray, Zava, Chan, Chee.

Corresponding author

Correspondence to Timothy S. McHale.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest with the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McHale, T.S., Gray, P.B., Chan, Kc. et al. Acute Salivary Steroid Hormone Responses in Juvenile Boys and Girls to Non-physical Team Competition. Adaptive Human Behavior and Physiology 4, 223–247 (2018). https://doi.org/10.1007/s40750-018-0089-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40750-018-0089-0

Keywords

Navigation