Skip to main content
Log in

KAM for autonomous quasi-linear perturbations of mKdV

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

We prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear (also called strongly nonlinear) autonomous Hamiltonian differentiable perturbations of the mKdV equation. The proof is based on a weak version of the Birkhoff normal form algorithm and a nonlinear Nash–Moser iteration. The analysis of the linearized operators at each step of the iteration is achieved by pseudo-differential operator techniques and a linear KAM reducibility scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alazard, T., Baldi, P.: Gravity capillary standing water waves. Arch. Ration. Mech. Anal. 217(3), 741–830 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldi, P.: Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type. Ann. Inst. H. Poincaré (C) Anal. Non Linéaire 30, 33–77 (2013)

  3. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359, 471–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear KdV. C. R. Acad. Sci. Paris Ser. I 352, 603–607 (2014)

  5. Baldi, P., Berti, M., Montalto, R.: KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré (C) Anal. Non Linéaire. pp. 15–89. doi:10.1016/j.anihpc.2015.07.003

  6. Baldi, P., Floridia, G., Haus, E.: Exact controllability for quasi-linear perturbations of KdV. Preprint arXiv:1510.07538

  7. Berti, M., Biasco, P., Procesi, M.: KAM theory for the Hamiltonian DNLW. Ann. Sci. Éc. Norm. Supér. (4) 46, 301–373 (2013) (fascicule 2)

  8. Berti, M., Biasco, P., Procesi, M.: KAM theory for the reversible derivative wave equation. Arch. Ration. Mech. Anal. 212, 905–955 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \( {\mathbb{T}}^d \) with a multiplicative potential. J. Eur. Math. Soc. 15, 229–286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berti, M., Bolle P.: A Nash–Moser approach to KAM theory. Fields Institute Communications. In: Hamiltonian PDEs and Applications, vol. 75. pp. 255–284

  11. Berti, M., Corsi, L., Procesi, M.: An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Commun. Math. Phys. 334(3), 1413–1454 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berti, M., Montalto, R.: KAM for gravity capillary water waves. Preprint arXiv:1602.02411

  13. Bourgain, J.: Gibbs measures and quasi-periodic solutions for nonlinear Hamiltonian partial differential equations. In: Gelfand Math. Sem, pp. 23–43. Birkhäuser, Boston (1996)

  14. Feola, R., Procesi, M.: Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations. J. Differ. Equ. 259(7), 3389–3447 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guan, H., Kuksin, S.: The KdV equation under periodic boundary conditions and its perturbations. Nonlinearity 27(9), R61–R88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iooss, G., Plotnikov, P.I.: Small divisor problem in the theory of three-dimensional water gravity waves. In: Mem. Am. Math. Soc. 200, vol. 940 (2009)

  17. Iooss, G., Plotnikov, P.I., Toland, J.F.: Standing waves on an infinitely deep perfect fluid under gravity. Arch. Ration. Mech. Anal. 177(3), 367–478 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kappeler, T., Pöschel J.: KAM and KdV. Springer, New York (2003)

  19. Kappeler, T., Topalov, P.: Global well-posedness of mKdV in \( L^2 (T, R)\). Commun. Partial Differ. Equ. 30(1–3), 435–449 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klainerman, S., Majda, A.: Formation of singularities for wave equations including the nonlinear vibrating string. Commun. Pure Appl. Math. 33, 241–263 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen. 21(3), 22–37, 95 (1987)

  22. Kuksin, S.: A KAM theorem for equations of the Korteweg–de Vries type. Rev. Math. Phys. 10(3), 1–64 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Kuksin, S.: Analysis of Hamiltonian PDEs. In: Oxford Lecture Series in Mathematics and its Applications, vol. 19, pp. xii+212. Oxford University Press, Oxford (2000)

  24. Kuksin, S., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 2(143), 149–179 (1996)

    Article  MATH  Google Scholar 

  25. Lax, P.: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5, 611–613 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, J., Yuan, X.: A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys 307(3), 629–673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71(2), 269–296 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Procesi, M., Procesi, C.: A normal form for the Schrödinger equation with analytic non-linearities. Commun. Math. Phys. 312, 501–557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Taylor, M.E.: Pseudodifferential operators and nonlinear PDEs. In: Progress in Mathematics. Birkhäuser, Boston (1991)

  30. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24, 1189–1228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zehnder, E.: Generalized implicit function theorems with applications to some small divisors problems I–II. Commun. Pure Appl. Math. 28, 91–140 (1975) [and 29, 49–113 (1976)]

Download references

Acknowledgments

This research was supported by the European Research Council under FP7, ERC Project 306414 HamPDEs, and PRIN 2012 “Variational and perturbative aspects of nonlinear differential problems”. This research was carried out in the frame of Programme STAR, financially supported by UniNA and Compagnia di San Paolo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Baldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldi, P., Berti, M. & Montalto, R. KAM for autonomous quasi-linear perturbations of mKdV. Boll Unione Mat Ital 9, 143–188 (2016). https://doi.org/10.1007/s40574-016-0065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-016-0065-1

Keywords

Mathematics Subject Classification

Navigation