Skip to main content
Log in

Effect of the Al–CNT interlayer on the tensile elastic modulus of Al matrix composites with random dispersion of CNTs

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work studies the effect of Al4C3 layer formation in the carbon nanotube (CNT)–Al interface on the tensile elastic modulus of the resulting composite material, focusing on the thickness of this layer. 3-D models combining discrete element model and finite element analysis (FEA) were used in order to simulate the behavior of composites with different volume fractions of CNTs randomly dispersed into the Al matrix. Layers of 1, 5, 10 and 15 nm were modeled, affecting the CNTs according to the expected interfacial reaction. Estimations were compared to those obtained in a previous work using unit cell models for an ordered composite. Results showed that the presence of this interface increases total reinforcement volume fraction. Besides, elastic modulus of the composites increased with CNT volume fraction, while the increase in the interface thickness also provoked an increment in the Young’s modulus, attributed to the combined reinforcement effect of CNT and Al4C3. Estimations for the 3-D models were between maxima and minima values predicted by longitudinal and transversal moduli for ordered composites. Results also showed the importance of the use of more realistic FEA models for improving the predicting ability of this method for predicting the mechanical behavior of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Everett RK, Arsenault RJ (eds) (1991) Metal matrix composites: processing and interface. Academic Press, New York

    Google Scholar 

  2. Park SH, Bandaru PR (2010) Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages. Polymer 51(22):5071–5077. https://doi.org/10.1016/j.polymer.2010.08.063

    Article  Google Scholar 

  3. Hashin Z, Rosen BW (1965) The elastic moduli of fiber-reinforced materials. J Appl Mech 31(2):223–232. https://doi.org/10.1115/1.3629590

    Article  Google Scholar 

  4. Yu N, Chang YW (2008) Effects of CNT diameter on the uniaxial stress-strain behavior of CNT/epoxy composites. J Nanomater 2008:1–6. https://doi.org/10.1155/2008/834248

    Article  Google Scholar 

  5. Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites: a review. Int Mater Rev 55(1):41–64. https://doi.org/10.1179/095066009X12572530170543

    Article  Google Scholar 

  6. Umma A, Maleque MA, Iskandar IY, Mohammed YA (2012) Carbon nano tube reinforced aluminium matrix nano-composite: a critical review. Aust J Basic Appl Sci 6(12):69–75

    Google Scholar 

  7. He CN, Zhao NQ, Shi CS, Song SZ (2010) Fabrication of aluminum carbide nanowires by a nano-template reaction. Carbon 48(4):931–938. https://doi.org/10.1016/j.carbon.2009.10.004

    Article  Google Scholar 

  8. Laha T, Kuchibhatla S, Seal S, Li W, Agarwal A (2007) Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Mater 55(3):1059–1066. https://doi.org/10.1016/j.actamat.2006.09.025

    Article  Google Scholar 

  9. Noguchi T, Magario A, Fukazawa S, Shimizu S, Beppu J, Seki M (2004) Carbon nanotube/aluminium composites with uniform dispersion. Mater Trans 45(2):602–604. https://doi.org/10.2320/matertrans.45.602

    Article  Google Scholar 

  10. Simões S, Viana F, Reis Marcos AL, Vieira MF (2014) Improved dispersion of carbon nanotubes in aluminum nanocomposites. Compos Struct 108:992–1000. https://doi.org/10.1016/j.compstruct.2013.10.043

    Article  Google Scholar 

  11. Bakshi SR, Keshri AK, Singh V, Seal S, Agarwal A (2009) Interface in carbon nanotube reinforced aluminum silicon composites: thermodynamic analysis and experimental verification. J Alloy Compd 481(1–2):207–213. https://doi.org/10.1016/j.jallcom.2009.03.055

    Article  Google Scholar 

  12. Frantziskonis GN (1994) Fiber-matrix interface: information from experiments via simulation. Compos Struct 29(3):231–247. https://doi.org/10.1016/0263-8223(94)90021-3

    Article  Google Scholar 

  13. Cook RD, Malkus DS, Plesha ME (1989) Concepts and applications of finite element analysis, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  14. Al Masud M, Masud AKM (2010) Effect of interface characteristic and property on axial modulus of carbon nanotube based composites. J Mech Eng 41(1):15–24. https://doi.org/10.3329/jme.v41i1.5358

    Article  Google Scholar 

  15. Joshi UA, Joshi P, Harsha SP, Sharma SC (2010) Evaluation of the mechanical properties of carbon nanotube based composites by finite element analysis. Int J Eng Sci Technol 2(5):1098–1107

    Google Scholar 

  16. Ahmadi I, Aghdam MM (2010) Analysis of micro-stresses in the SiC/Ti metal matrix composite using a truly local meshless method. Proc Inst Mech Eng Part C J Mech Eng Sci 224(8):1567-7. https://doi.org/10.1243/09544062jmes1888

    Article  Google Scholar 

  17. Lasagni F, Degischer HP (2010) Enhanced Young’s modulus of Al-Si alloys and reinforced matrices by co-continuous structures. J Compos Mater 44(6):739–755. https://doi.org/10.1177/0021998309347649

    Article  Google Scholar 

  18. Alfonso I, Navarro O, Vargas J, Beltrán A, Aguilar C, González G, Figueroa IA (2015) FEA evaluation of the Al4C3 formation effect on the Young’s modulus of carbon nanotube reinforced aluminum matrix composites. Compos Struct 127:420–425. https://doi.org/10.1016/j.compstruct.2015.03.032

    Article  Google Scholar 

  19. Sebsadji SK, Chouicha K (2012) Determining periodic representative volumes of concrete mixtures based on the fractal analysis. Int J Solids Struct 49:2941–2950. https://doi.org/10.1016/j.ijsolstr.2012.05.017

    Article  Google Scholar 

  20. Pérez L, Lascano S, Aguilar C, Estay D, Messner U, Figueroa IA, Alfonso I (2015) DEM-FEA estimation of pores arrangement effect on the compressive Young’s modulus for Mg foams. Comput Mater Sci 110:281–286. https://doi.org/10.1016/j.commatsci.2015.08.042

    Article  Google Scholar 

  21. Ding W, Calabri L, Kohlhaas KM, Chen X, Dikin DA, Ruoff RS (2007) Modulus, fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes. Exp Mech 47(1):25–36. https://doi.org/10.1007/s11340-006-9344-6

    Article  Google Scholar 

  22. Wen XX, Long H, Xiao Y, Zun-Ming L, Ying F, Yang-Xian L, Cheng-Chun T (2011) Ab initio study of the electronic structure and elastic properties of Al5C3N. Chin Phys B 20(12):126201:1–6. https://doi.org/10.1088/1674-1056/20/12/126201

    Article  Google Scholar 

  23. Tham LM, Gupta M, Cheng L (2001) Effect of limited matrix-reinforcement interfacial reaction on enhancing the mechanical properties of aluminium-silicon carbide composites. Acta Mater 49(16):3243–3253. https://doi.org/10.1016/S1359-6454(01)00221-X

    Article  Google Scholar 

  24. Kwon H, Estili M, Takagi K, Miyazaki T, Kawasaki A (2009) Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47(3):570–577. https://doi.org/10.1016/j.carbon.2008.10.041

    Article  Google Scholar 

Download references

Acknowledgements

L. Pérez acknowledges the financial support from the Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project FB0008, CONICYT. I. Alfonso would like to acknowledge the financial support from UNAM PAPIIT IN117316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Alfonso.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça, Ph.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, L., Cabrera, I., Santiago, A.A. et al. Effect of the Al–CNT interlayer on the tensile elastic modulus of Al matrix composites with random dispersion of CNTs. J Braz. Soc. Mech. Sci. Eng. 40, 550 (2018). https://doi.org/10.1007/s40430-018-1473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1473-1

Keywords

Navigation