Skip to main content
Log in

MHD flow of Eyring–Powell liquid in convectively curved configuration

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The objective of the present investigation is to examine the influences of radial magnetic field on the peristalsis of Eyring–Powell liquid in a curved channel. The channel walls satisfy the convective conditions of heat transfer. Problem formulation is made using conservation laws of mass, linear momentum and energy. Perturbation solutions of the resulting problems for flow and temperature through lubrication approach are developed. Attention is mainly focused to the outcome of involved sundry parameters on the pressure gradient, pressure rise, frictional force, velocity and temperature. The phenomena of pumping and trapping are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Latham TW (1966) Fluid Motion in a peristaltic pump. MIT, Cambridge

    Google Scholar 

  2. Shapiro AH, Jaffrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelength at low Reynolds number. J Fluid Mech 37:799–825

    Article  Google Scholar 

  3. Tripathi D (2012) A mathematical model for swallowing of food bolus through the esophagus under the influence of heat transfer. Int J Therm Sci 51:91–101

    Article  Google Scholar 

  4. Mekheimer KhS, Abd Elmaboud Y, Abdellateef AI (2013) Particulate suspension flow induced by sinusoidal peristaltic waves through eccentric cylinders: thread annular. Int J Biomath 06:1350026

    Article  MathSciNet  MATH  Google Scholar 

  5. Mustafa M, Abbasbandy S, Hina S, Hayat T (2014) Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effects. J Taiwan Inst Chem Eng 45:308–316

    Article  Google Scholar 

  6. Mekheimer KS, Abd elmaboud Y (2014) Simultaneous effects of variable viscosity and thermal conductivity on peristaltic flow in a vertical asymmetric channel. Can J Phys 92:1541–1555

    Article  Google Scholar 

  7. Gad NS (2014) Effects of hall currents on peristaltic transport with compliant walls. Appl Math Comput 235:546–554

    MathSciNet  MATH  Google Scholar 

  8. Sinha A, Shit GC, Ranjit NK (2015) Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: effects of variable viscosity, velocity-slip and temperature jump. Alex Eng J 54:691–704

    Article  Google Scholar 

  9. Ellahi R, Bhatti MM, Riaz A, Sheikoleslami M (2014) The effect of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium. J. Porous Media 17:1–20

    Article  Google Scholar 

  10. Awais M, Farooq S, Yasmin H, Hayat T, Alsaedi A (2014) Convective heat transfer analysis for MHD peristaltic flow of Jeffrey fluid in an asymmetric channel. Int J Biomath 7:15

    Article  MATH  Google Scholar 

  11. Kothandapani M, Srinivas S (2012) Peristaltic transport of Jeffrey fluid under the effect of magnetic field in an asymmetric channel. Int J Non-Linear Mech 43:915–924

    Article  Google Scholar 

  12. Hayat T, Abbasi FM, Alsaedi A, Alsaadi F (2014) Hall and Ohmic heating effects on the peristaltic transport of Carreau-Yasuda fluid in an asymmetric channel. Z Naturforschung 69:43–51

    Google Scholar 

  13. Asghar S, Minhas T, Ali A (2014) Existence of a Hartmann layer in the peristalsis of Sisko fluid. Chin Phys B 23:054702–054707

    Article  Google Scholar 

  14. Hina S, Mustafa M, Hayat T, Alotaibi Naif D (2015) On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer an wall properties. Appl Math Comput 263:378–391

    MathSciNet  Google Scholar 

  15. Hayat T, Hina S, Hendi AA, Asghar S (2012) Effects of wall properties on the peristaltic flow of a third grade fluid in a curved channel with heat and mass transfer. Int J Heat Mass Transf 54:5126–5136

    Article  MATH  Google Scholar 

  16. Ali N, Sajid M, Abbas Z, Javed T (2010) Non-Newtonian fluid flow induced by peristaltic waves in a curved channel. Eur J Mech B 29:387–394

    Article  MathSciNet  MATH  Google Scholar 

  17. Shehzad SA, Abbasi FM, Hayat T, Alsaadi F, Mousae G (2015) Peristalsis in a curved channel with slip condition and radial magnetic field. Int J Heat Mass Transf 91:562–569

    Article  Google Scholar 

  18. Vajravelua K, Sreenadh S, Saravana R (2013) Combined influence of velocity slip, temperature and concentration jump conditions on MHD peristaltic transport of a Carreau fluid in a non-uniform channel. Appl Math Comput 225:656–676

    MathSciNet  MATH  Google Scholar 

  19. Hina S, Mustafa M, Hayat T (2015) On the exact solution for peristaltic flow of Couple-stress fluid with wall properties. Bulg Chem Commun 47:30–37

    Google Scholar 

  20. Abd-Alla AM, Abo-Dahab SM (2015) Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel. J Mag Mag Mater 374:680–689

    Article  Google Scholar 

  21. Sato H, Kawai T, Fujita T, Okabe M (2000) Two dimensional peristaltic flow in curved channels. Trans Jpn Soc Mech Eng B 66:679–685

    Article  Google Scholar 

  22. Ali N, Sajid M, Javed T, Abbas Z (2010) Heat transfer analysis of peristaltic flow in a curved channel. Int J Heat Mass Transf 53:3319–3325

    Article  MATH  Google Scholar 

  23. Ali N, Sajid M, Hayat T (2010) Long wavelength flow analysis on curved channel. Z Naturforsch A 65:191–196

    Google Scholar 

  24. Hayat T, Hina S, Hendi AA, Asghar S (2012) Effects of wall properties on the peristaltic flow of a third grade fluid in a curved channel with heat and mass transfer. Int J Heat Mass Transf 54:5126–5136

    Article  MATH  Google Scholar 

  25. Hina S, Mustafa M, Hayat T, Alotaibi ND (2015) On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties. Appl Math Comput 263:378–391

    MathSciNet  Google Scholar 

  26. Hina S, Mustafa M, Hayat T, Alsaedi A (2016) Peristaltic flow of Eyring–Powell fluid in curved channel with heat transfer: a useful application in biomedicine. Comp Methods Progr Biomed 135:89–100

    Article  Google Scholar 

  27. Hayat T, Abbasi FM, Ahmad B, Alsaedi A (2014) Peristaltic transport of Carreau–Yasuda fluid in a curved channel with slip effects. PLoS ONE 9:e95070

    Article  Google Scholar 

  28. Shehzad SA, Abbasi FM, Hayat T, Alsaadi F, Mousa G (2015) Peristalsis in a curved channel with slip condition and radial magnetic field. Int J Heat Mass Transf 91:562–569

    Article  Google Scholar 

  29. Hayat T, Farooq S, Ahmad B, Alsaedi A (2017) Effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffrey material with Darcy resistance. Int J Heat Mass Transf 106:244–252

    Article  Google Scholar 

  30. Hayat T, Farooq S, Alsaedi A, Ahmad B (2016) Hall and radial magnetic field effects on radiative peristaltic flow of Carreau-Yasuda fluid in a channel with convective heat and mass transfer. J Mag Mag Mater 412:207–216

    Article  Google Scholar 

  31. Hayat T, Bibi S, Rafiq M, Alsaedi A, Abbasi FM (2016) Effect of an inclined magnetic field on peristaltic flow of Williamson fluid in an inclined channel with convective conditions. J Magn Magn Mater 405:358–369

    Article  Google Scholar 

  32. Hayat T, Yasmin H, Alsaedi A (2015) Convective heat transfer analysis for peristaltic flow of power-law fluid in a channel. J Braz Soc Mech Sci Eng 37:463–477

    Article  Google Scholar 

  33. Hayat T, Yasmin H, Ahmad B, Chen B (2014) Simultaneous effects of convective conditions and nanoparticles on peristaltic motion. J Mol Liq 193:74–82

    Article  Google Scholar 

  34. Hayat T, Farooq S, Alsaedi A, Ahmad B (2017) Numerical study for Soret and Dufour effects on mixed convective peristalsis of Oldroyd 8-constants fluid. Int J Thermal Sci 112:68–81

    Article  Google Scholar 

  35. Alsaedi A, Batool N, Yasmin H, Hayat T (2013) Convective heat transfer analysis on Prandtl fluid model with peristalsis. Appl Bio Biomech 10:197–208

    Article  Google Scholar 

  36. Powell RE, Eyring H (1944) Mechanisms for the relaxation theory of viscosity. Nature 154:427–429

    Article  Google Scholar 

  37. Khan MI, Kiyani MZ, Malik MY, Yasmeenm T, Khan MWA, Abbas T (2016) Numerical investigation of magnetohydrodynamic stagnation point flow with variable properties. Alex Eng J 55:2367–2373

    Article  Google Scholar 

  38. Hayat T, Zubair M, Ayub M, Waqas M, Alsaedi A (2016) Stagnation point flow towards nonlinear stretching surface with Cattaneo–Christov heat flux. Eur Phys J Plus 131:355–364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Farooq.

Additional information

Technical Editor: Jader Barbosa Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, S., Hayat, T., Ahmad, B. et al. MHD flow of Eyring–Powell liquid in convectively curved configuration. J Braz. Soc. Mech. Sci. Eng. 40, 159 (2018). https://doi.org/10.1007/s40430-018-1071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1071-2

Keywords

Navigation