Skip to main content
Log in

A posteriori error analysis of the time dependent Navier–Stokes equations with mixed boundary conditions

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper we study the time dependent Navier–Stokes problem with mixed boundary conditions. The problem is discretized by the backward Euler’s scheme in time and finite elements in space. We establish optimal a posteriori error estimates with two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization. We finish with numerical validation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abboud, H., El Chami, F., Sayah, T.: A priori and a posteriori estimates for three dimentional Stokes equations with non standard boundary conditions. Numer. Methods Partial Differ. Equ. 28, 1178–1193 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 2, 823–864 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bänsch, E., Karakatsani, F., Makridakis, Ch.: A posteriori error control for fully discrete Crank–Nicolson schemes. SIAM J. Numer. Anal. 50, 2845–2872 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergam, A., Bernardi, C., Hecht, F., Mghazli, Z.: Error indicators for the mortar finite element discretization of a parabolic problem. Numer. Algorithms 34, 187–201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernardi, C., Hecht, F., Verfürth, R.: Finite element discretization of the three-dimensional Navier-Stokes equations with mixed boundary conditions. Math. Model. Numer. Anal. 3, 1185–1201 (2009)

    Article  Google Scholar 

  6. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations variationnelles de problèmes aux limites elliptiques. Collection “Mathématiques et Applications”, vol. 45. Springer, Berlin (2004)

  7. Bernardi, C., Sayah, T.: A posteriori error analysis of the time dependent Stokes equations with mixed boundary conditions. IMA J. Numer. Anal. 35, 179–198 (2015). doi:10.1093/imanum/drt06

    Article  MathSciNet  Google Scholar 

  8. Bernardi, C., Süli, E.: Time and space adaptivity for the second-order wave equation. Math. Models Methods Appl. Sci. 15, 199–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernardi, C., Verfürth, R.: A posteriori error analysis of the fully discretized time-dependent Stokes equations. Math. Model. Numer. Anal. 38, 437–455 (2004)

    Article  MATH  Google Scholar 

  10. Clément, P.: Approximation by finite element functions using local regularisation. R.A.I.R.O. Anal. Numer. 9, 77–84 (1975)

  11. Costabel, M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Meth. Appl. Sci. 12, 365–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dupont, T.: Mesh modification for evolution equations. Math. Comp. 39, 85–100 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. El Chami, F., Sayah, T.: A posteriori error estimators for the fully discrete time dependent Stokes problem with some different boundary conditions. Calcolo 47, 169–192 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Girault, V., Raviart, P.-A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1979)

  15. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986)

  16. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson, C., Rannacher, R., Boman, M.: Numerics and hydrodynamic stability: toward error control in computational fluid dynamics. SIAM J. Numer. Anal. 32, 1058–1079 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lakkis, O., Makridakis, Ch.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75, 1627–1658 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nochetto, R.H., Savaré, G., Verdi, C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure. Math. 53, 525–589 (2000)

    Article  MATH  Google Scholar 

  20. Pousin, J., Rappaz, J.: Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69, 213–231 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland Publishing Co., Amsterdam (1977)

  22. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, New York (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Bernardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardi, C., Sayah, T. A posteriori error analysis of the time dependent Navier–Stokes equations with mixed boundary conditions. SeMA 69, 1–23 (2015). https://doi.org/10.1007/s40324-015-0033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-015-0033-1

Keywords

Mathematics Subject Classification

Navigation