Skip to main content
Log in

Highly accurate technique for solving distributed-order time-fractional-sub-diffusion equations of fourth order

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a new method for calculating the numerical solution of distributed-order time-fractional-sub-diffusion equations (DO-TFSDE) of fourth order. The method extends the shifted fractional Jacobi (SFJ) collocation scheme for discretizing both the time and space variables. The approximate solution is expressed as a finite expansion of SFJ polynomials whose derivatives are evaluated at the SFJ quadrature points. The process yields a system of algebraic equations that are solved analytically. The new method is compared with alternative numerical algorithms when solving different types of DO-TFSDE. The results show that the proposed method exhibits superior accuracy with an exponential convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelkawy M (2018) A collocation method based on Jacobi and fractional order Jacobi basis functions for multi-dimensional distributed-order diffusion equations. Int J Nonlinear Sci Numer Simul 19(7–8):781–792

    MathSciNet  MATH  Google Scholar 

  • Abdelkawy M, Lopes AM, Zaky M (2019) Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction-diffusion equations. Comput Appl Math 38(2):81

    MathSciNet  MATH  Google Scholar 

  • Agrawal OP (2000) A general solution for the fourth-order fractional diffusion-wave equation. Fract Calc Appl Anal 3(1):1–12

    MathSciNet  MATH  Google Scholar 

  • Agrawal OP (2001) A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain. Comput Struct 79(16):1497–1501

    Google Scholar 

  • Ammi MRS, Jamiai I, Torres DF (2019) A finite element approximation for a class of Caputo time-fractional diffusion equations. Comput Math Appl 78:1334–1344

    MathSciNet  Google Scholar 

  • Bhrawy A, Abdelkawy M (2015) A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J Comput Phys 294:462–483

    MathSciNet  MATH  Google Scholar 

  • Bhrawy A, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J Comput Phys 281:876–895

    MathSciNet  MATH  Google Scholar 

  • Bhrawy A, Abdelkawy M, Alzahrani A, Baleanu D, Alzahrani E (2015a) A Chebyshev–Laguerre–Gauss–Radau collocation scheme for solving a time fractional sub-diffusion equation on a semi-infinite domain. Proc Rom Acad Ser A 16:490–498

    MathSciNet  Google Scholar 

  • Bhrawy A, Doha EH, Baleanu D, Ezz-Eldien SS (2015b) A spectral tau algorithm based on jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J Comput Phys 293:142–156

    MathSciNet  MATH  Google Scholar 

  • Bhrawy A, Zaky M, Baleanu D, Abdelkawy M (2015c) A novel spectral approximation for the two-dimensional fractional sub-diffusion problems. Rom J Phys 60(3–4):344–359

    Google Scholar 

  • Bhrawy AH, Taha TM, Machado JAT (2015d) A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn 81(3):1023–1052

    MathSciNet  MATH  Google Scholar 

  • Bu W, Shu S, Yue X, Xiao A, Zeng W (2019) Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain. Comput Math Appl 78(5):1367–1379

    MathSciNet  Google Scholar 

  • Chechkin A, Gorenflo R, Sokolov I (2002) Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Physical Review E 66(4):046129

    Google Scholar 

  • Chen CM, Liu F, Turner I, Anh V (2011) Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes’ first problem for a heated generalized second grade fluid. Comput Math Appl 62(3):971–986

    MathSciNet  MATH  Google Scholar 

  • Doha EH, Bhrawy A, Ezz-Eldien SS (2011a) A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput Math Appl 62(5):2364–2373

    MathSciNet  MATH  Google Scholar 

  • Doha EH, Bhrawy A, Hafez R (2011b) A Jacobi–Jacobi dual-Petrov–Galerkin method for third-and fifth-order differential equations. Math Comput Model 53(9–10):1820–1832

    MathSciNet  MATH  Google Scholar 

  • Doha E, Bhrawy A, Baleanu D, Hafez R (2014) A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations. Appl Numer Math 77:43–54

    MathSciNet  MATH  Google Scholar 

  • Doha E, Abdelkawy M, Amin A, Lopes AM (2019a) Shifted Jacobi–Gauss-collocation with convergence analysis for fractional integro-differential equations. Commun Nonlinear Sci Numer Simul 72:342–359

    MathSciNet  Google Scholar 

  • Doha E, Hafez R, Youssri Y (2019b) Shifted Jacobi spectral-Galerkin method for solving hyperbolic partial differential equations. Comput Math Appl 78(3):889–904

    MathSciNet  Google Scholar 

  • Doha EH, Abdelkawy MA, Amin AZ, Baleanu D (2019c) Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations. Nonlinear Anal Model Control 24(3):332–352

    MathSciNet  MATH  Google Scholar 

  • Golbabai A, Nikan O (2019) A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black-Scholes model. Comput Econ 55:119–141

    Google Scholar 

  • Golbabai A, Sayevand K (2011) Fractional calculus—a new approach to the analysis of generalized fourth-order diffusion-wave equations. Comput Math Appl 61(8):2227–2231

    MathSciNet  MATH  Google Scholar 

  • Golbabai A, Nikan O, Nikazad T (2019a) Numerical analysis of time fractional Black–Scholes European option pricing model arising in financial market. Comput Appl Math 38(3):173

    MathSciNet  MATH  Google Scholar 

  • Golbabai A, Nikan O, Nikazad T (2019b) Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media. Int J Appl Comput Math 50:1–22

    MathSciNet  MATH  Google Scholar 

  • Guo J, Li C, Ding H (2014) Finite difference methods for time subdiffusion equation with space fourth order. Commun Appl Math Comput 28:96–108

    MathSciNet  MATH  Google Scholar 

  • Hanert E (2011) On the numerical solution of space-time fractional diffusion models. Comput Fluids 46(1):33–39

    MathSciNet  MATH  Google Scholar 

  • Hu X, Zhang L (2012) On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems. Appl Math Comput 218(9):5019–5034

    MathSciNet  MATH  Google Scholar 

  • Jafari H, Dehghan M, Sayevand K (2008) Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method. Numer Methods Partial Differ Equ 24(4):1115–1126

    MathSciNet  MATH  Google Scholar 

  • Ji CC, Sun ZZ, Hao ZP (2016) Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions. J Sci Comput 66(3):1148–1174

    MathSciNet  MATH  Google Scholar 

  • Li X, Xu C (2010) Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun Comput Phys 8(5):1016

    MathSciNet  MATH  Google Scholar 

  • Li C, Zeng F (2013) The finite difference methods for fractional ordinary differential equations. Numer Funct Anal Optim 34(2):149–179

    MathSciNet  MATH  Google Scholar 

  • Liu Y, Fang Z, Li H, He S (2014) A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl Math Comput 243:703–717

    MathSciNet  MATH  Google Scholar 

  • Liu Y, Du Y, Li H, He S, Gao W (2015) Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem. Comput Math Appl 70(4):573–591

    MathSciNet  Google Scholar 

  • Narumi S (1920) Some formulas in the theory of interpolation of many independent variables. Tohoku Math J 18:809–821

    MATH  Google Scholar 

  • Nikan O, Tenreiro Machado J, Golbabai A, Nikazad AT (2019) Numerical investigation of the nonlinear modified anomalous diffusion process. Nonlinear Dyn 97:2757–2775

    MATH  Google Scholar 

  • Odibat ZM, Shawagfeh NT (2007) Generalized Taylor’s formula. Appl Math Comput 186:286–293

    MathSciNet  MATH  Google Scholar 

  • Oldhan K, Spainer J (1974) The fractional calculus. Academic, New York

    Google Scholar 

  • Padrino JC (2017) On the self-similar, early-time, anomalous diffusion in random networks—approach by fractional calculus. Int Commun Heat Mass Transf 89:134–138

    Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic, New York

    MATH  Google Scholar 

  • Qiao Y, Zhai S, Feng X (2017) RBF-FD method for the high dimensional time fractional convection-diffusion equation. Int Commun Heat Mass Transf 89:230–240

    Google Scholar 

  • Qiu W, Xu D, Chen H (2019) A formally second-order BDF finite difference scheme for the integro-differential equations with the multi-term kernels. Int J Comput Math. https://doi.org/10.1080/00207160.2019.1677896:1-19

    Article  Google Scholar 

  • Ran M, Zhang C (2018) New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order. Appl Numer Math 129:58–70

    MathSciNet  MATH  Google Scholar 

  • Siddiqi SS, Arshed S (2015) Numerical solution of time-fractional fourth-order partial differential equations. Int J Comput Math 92(7):1496–1518

    MathSciNet  MATH  Google Scholar 

  • Sneddon I (1951) Fourier transforms. McGraw-Hill, New York

    MATH  Google Scholar 

  • Takeuchi Y, Yoshimoto Y, Suda R (2017) Second order accuracy finite difference methods for space-fractional partial differential equations. J Comput Appl Math 320:101–119

    MathSciNet  MATH  Google Scholar 

  • Tomovski Ž, Sandev T (2013) Exact solutions for fractional diffusion equation in a bounded domain with different boundary conditions. Nonlinear Dyn 71(4):671–683

    MathSciNet  Google Scholar 

  • Xu Y, Ertürk V (2014) A finite difference technique for solving variable-order fractional integro-differential equation. Bull Iran Math Soc 40(3):699–712

    MathSciNet  MATH  Google Scholar 

  • Xu D, Qiu W, Guo J (2019) A compact finite difference scheme for the fourth-order time-fractional integro-differential equation with a weakly singular kernel. Numer Methods Partial Differ Equ. https://doi.org/10.1002/num.22436:1-20

    Article  Google Scholar 

  • Yang XJ (2019) General fractional derivatives: theory, methods and applications. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Yang XJ, Gao F, Ju Y, Zhou HW (2018a) Fundamental solutions of the general fractional-order diffusion equations. Math Methods Appl Sci 41(18):9312–9320

    MathSciNet  MATH  Google Scholar 

  • Yang XJ, Gao F, Srivastava H (2018b) A new computational approach for solving nonlinear local fractional PDEs. J Comput Appl Math 339:285–296

    MathSciNet  MATH  Google Scholar 

  • Zaky MA, Ameen IG, Abdelkawy MA (2017) A new operational matrix based on Jacobi wavelets for a class of variable-order fractional differential equations. Proc Rom Acad Ser A 18(4):315–322

    MathSciNet  Google Scholar 

  • Zaky M, Doha E, Machado JT (2018) A spectral framework for fractional variational problems based on fractional Jacobi functions. Appl Numer Math 132:51–72

    MathSciNet  MATH  Google Scholar 

  • Zhang H, Liu F, Zhuang P, Turner I, Anh V (2014) Numerical analysis of a new space-time variable fractional order advection-dispersion equation. Appl Math Comput 242:541–550

    MathSciNet  MATH  Google Scholar 

  • Zhou J, Xu D (2019) Alternating direction implicit difference scheme for the multi-term time-fractional integro-differential equation with a weakly singular kernel. Comput Math Appl 79:244–255

    MathSciNet  Google Scholar 

  • Zhou J, Xu D, Chen H (2018) A weak Galerkin finite element method for multiterm time-fractional diffusion equations. East Asian J Appl Math 8(1):181–193

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António M. Lopes.

Additional information

Communicated by Agnieszka Malinowska.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkawy, M.A., Babatin, M.M. & Lopes, A.M. Highly accurate technique for solving distributed-order time-fractional-sub-diffusion equations of fourth order. Comp. Appl. Math. 39, 65 (2020). https://doi.org/10.1007/s40314-020-1070-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-1070-7

Keywords

Mathematics Subject Classification

Navigation