Skip to main content
Log in

New discretization of Caputo–Fabrizio derivative

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We derive a numerical approximation, namely L1–2 formula, to the Caputo–Fabrizio derivative by using a quadratic interpolation. Quadratic and cubic convergence rates are achieved for L1 and L1–2 formulas using Lagrange interpolation, respectively. We compute Caputo–Fabrizio derivatives of some known functions both theoretically and numerically. In addition, we solve non/linear sub-diffusion equations to test theoretical findings. Numerical results confirm the theoretically observed convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Algahtani OJJ (2016) Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model. Chaos Solit Fract 89:552–559

    Article  MathSciNet  MATH  Google Scholar 

  • Alkahtani BS, Algahtani OJ, Dubey RS, Goswami P (2017) Solution of fractional oxygen diffusion problem having without singular kernel. J Nonlinear Sci Appl (JNSA) 10:299–307. doi:10.22436/jnsa.010.01.28

  • Alkahtani B, Atangana A (2016) Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order. Chaos Solit Fract 89:539–546

    Article  MathSciNet  MATH  Google Scholar 

  • Allen SM, Cahn JW (1979) A microscopic theory for anti phase boundary motion and its application to anti phase domain coarsening. Acta Metall Mater 27(6):1085–1095

    Article  Google Scholar 

  • Alqahtani RT (2016) Fixed-point theorem for Caputo–Fabrizio fractional Nagumo equation with nonlinear diffusion and convection. J Nonlinear Sci Appl 9:1991–1999

    Article  MathSciNet  MATH  Google Scholar 

  • Alsaedi A, Baleanu D, Etemad S, Rezapour S (2016) On coupled systems of time-fractional differential problems by using a new fractional derivative. J Funct Spaces 2016:4626940. doi:10.1155/2016/4626940

  • Atangana A (2016) On the new fractional derivative and application to nonlinear Fishers reaction–diffusion equation. Appl Math Comput 273:948–956

    MathSciNet  Google Scholar 

  • Atangana A, Alkahtani BST (2015) Analysis of the Keller–Segel model with a fractional derivative without singular kernel. Entropy 17(6):4439–4453

    Article  MathSciNet  MATH  Google Scholar 

  • Atangana A, Alqahtani RT (2016) Numerical approximation of the space-time Caputo–Fabrizio fractional derivative and application to groundwater pollution equation. Adv Differ Equ 2016(1):156

    Article  MathSciNet  Google Scholar 

  • Baleanu D, Agheli B, Al Qurashi MM (2016) Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives. Adv Mech Eng 8(12):1–8

    Article  Google Scholar 

  • Burden RL, Faires JD (1989) Numerical analysis, 4th edn. PWS Publishing Co., Boston

    MATH  Google Scholar 

  • Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl 1(2):1–13

    Google Scholar 

  • Caputo M, Fabrizio M (2016) Applications of new time and spatial fractional derivatives with exponential kernels. Progr Fract Differ Appl 2(2):1–11

    Article  Google Scholar 

  • Coronel-Escamilla A, Gómez-Aguilar J, López-López M, Alvarado-Martínez V, Guerrero-Ramírez G (2016) Triple pendulum model involving fractional derivatives with different kernels. Chaos Solit Fract 91:248–261

    Article  MathSciNet  MATH  Google Scholar 

  • Doungmo Goufo EF (2016) Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg-de Vries–Burgers equation. Math Model Anal 21(2):188–198

    Article  MathSciNet  Google Scholar 

  • Gao F, Yang X-J (2016) Fractional Maxwell fluid with fractional derivative without singular kernel. Therm Sci 20:871–877

    Article  Google Scholar 

  • Gao G-H, Sun Z-Z, Zhang H-W (2014) A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J Comput Phys 259:33–50. doi:10.1016/j.jcp.2013.11.017

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez-Aguilar J, López-López M, Alvarado-Martínez V, Reyes-Reyes J, Adam-Medina M (2016) Modeling diffusive transport with a fractional derivative without singular kernel. Physica A 447:467–481

    Article  MathSciNet  Google Scholar 

  • Gómez-Aguilar J, Baleanu D (2017) Schrödinger equation involving fractional operators with non-singular kernel. J Electromagn Wave Appl 31(7):752–761

  • Goufo EFD, Pene MK, Mwambakana JN (2015) Duplication in a model of rock fracture with fractional derivative without singular kernel. Open Math 13(1):839–846

    MathSciNet  MATH  Google Scholar 

  • Losada J, Nieto JJ (2015) Properties of a new fractional derivative without singular kernel. Progr Fract Differ Appl 1(2):87–92

    Google Scholar 

  • Machado JT, Kiryakova V (2017) The chronicles of fractional calculus. Fract Calc Appl Anal 20(2):307–336

    Article  MathSciNet  MATH  Google Scholar 

  • Mirza IA, Vieru D (2017) Fundamental solutions to advection–diffusion equation with time-fractional Caputo–Fabrizio derivative. Comput Math Appl 73(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Morales-Delgado V, Taneco-Hernández M, Gómez-Aguilar J (2017) On the solutions of fractional order of evolution equations. Eur Phys J Plus 132(1):47

    Article  Google Scholar 

  • Owolabi KM, Atangana A (2017) Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense. Chaos Solit Fract 99:171–179

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering, vol 198. Academic Press, Inc., San Diego, CA

  • Saqib M, Ali F, Khan I, Sheikh NA, Jan SAA et al (2017) Exact solutions for free convection flow of generalized Jeffrey fluid: a Caputo–Fabrizio fractional model. Alex Eng J. doi:10.1016/j.aej.2017.03.017

  • Singh J, Kumar D, Al Qurashi M, Baleanu D (2017) A new fractional model for giving up smoking dynamics. Adv Differ Equ 2017(1):88

    Article  MathSciNet  Google Scholar 

  • Srivastava HM, Trujillo JJ et al (2017) Theory and applications of fractional differential equations. Elsevier, Amsterdam

  • Yang X-J, Gao F, Srivastava HM (2017) Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations. Comput Math Appl 73(2):203–210

  • Yang X-J, Machado JT, Baleanu D (2017b) Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain. Fractals 25:1740006. doi:10.1142/0218348X17400060

  • Yang X-J (2017) Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Thermal Sci 21(3):1161–1171

    Article  Google Scholar 

  • Yang X-J, Machado JT (2017) A new fractional operator of variable order: application in the description of anomalous diffusion. Physica A 481:276–283

    Article  MathSciNet  Google Scholar 

  • Yang X-J, Tenreiro Machado J, Baleanu D, Cattani C (2016) On exact traveling-wave solutions for local fractional Korteweg–de Vries equation, Chaos: an interdisciplinary. J Nonlinear Sci 26(8):084312

    MATH  Google Scholar 

  • Yang X-J, Machado J, Nieto JJ (2017) A new family of the local fractional pdes. Fundam Inf 151(1–4):63–75

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuğba Akman.

Additional information

Communicated by José Tenreiro Machado.

Burak Yıldız would like to thank Department of Mathematics, Middle East Technical University, Ankara, Turkey, for giving him the opportunity to finish the part of his work.

Appendix

Appendix

Proof (Proof of Theorem 4)

$$\begin{aligned} ^{CF} _0\mathcal {D}^{\alpha }_t t^n&= \frac{M(\alpha )}{1 - \alpha } \exp (-ct)\int _{0}^{t}ns^{n-1}\exp (cs)\mathrm{d}s \\&=\frac{M(\alpha )}{1 - \alpha } \exp (-ct)\left( ns^{n-1}\frac{\exp (cs)}{c}|_0^t-\int _{0}^{t}n(n-1)s^{n-2}\frac{\exp (cs)}{c}\mathrm{d}s \right) \\&=\frac{M(\alpha )}{1 - \alpha } \exp (-ct)\left( ns^{n-1}\frac{\exp (cs)}{c}|_0^t - \left( n(n-1)s^{n-2} \frac{\exp (cs)}{c^2} |_0^t \right. \right. \\&\quad \left. \left. -\, \int _{0}^{t} n(n-1)(n-2)s^{n-3}\frac{\exp (cs)}{c^2}\mathrm{d}s \right) \right) . \end{aligned}$$

The result follows inductively. \(\square \)

Proof (Proof of Theorem 5)

$$\begin{aligned} ^{CF} _0\mathcal {D}^{\alpha }_t \cos (wt)&= \frac{M(\alpha )}{1 - \alpha } \exp (-ct)\int _{0}^{t}-w\sin (ws)\exp (cs)\mathrm{d}s\\&=\frac{M(\alpha )}{1 - \alpha } \exp (-ct)(-w)\left( \sin (ws)\frac{\exp (cs)}{c}|_0^t-w\int _{0}^{t}\cos (ws)\frac{\exp (cs)}{c}\mathrm{d}s\right) \\&=\frac{M(\alpha )}{1 - \alpha } \exp (-ct)(-w) \left( \sin (ws)\frac{\exp (cs)}{c}|_0^t -w \left( \cos (ws)\frac{\exp (cs)}{c^2}|_0^t \right. \right. \\&\quad + \left. \left. w\int _{0}^{t}\sin (ws)\frac{\exp (cs)}{c^2}\mathrm{d}s\right) \right) . \end{aligned}$$

By arranging the terms, the final result is obtained.

Proof (Proof of Theorem 6)

$$\begin{aligned} ^{CF} _0\mathcal {D}^{\alpha }_t \sin (wt)&= \frac{M(\alpha )}{1 - \alpha } \exp (-ct)\int _{0}^{t} w\cos (ws)\exp (cs)\mathrm{d}s\\&=\frac{M(\alpha )}{1 - \alpha } \exp (-ct)w \left( \cos (ws)\frac{\exp (cs)}{c}|_0^t + w\int _{0}^{t}\sin (ws)\frac{\exp (cs)}{c}\mathrm{d}s\right) \\&=\frac{M(\alpha )}{1 - \alpha } \exp (-ct)w \left( \cos (ws)\frac{\exp (cs)}{c}|_0^t + w \left( \sin (ws)\frac{\exp (cs)}{c^2}|_0^t \right. \right. \\&\quad \left. \left. - w\int _{0}^{t}\cos (ws)\frac{\exp (cs)}{c^2}\mathrm{d}s \right) \right) . \end{aligned}$$

By arranging the terms, the final result is obtained.

Proof (Proof of Theorem 7)

$$\begin{aligned} ^{CF} _0\mathcal {D}^{\alpha }_t \exp (wt)&= \frac{M(\alpha )}{1 - \alpha } \exp (-ct) \int _{0}^{t} w\exp ((w+c)s)\mathrm{d}s\\&= \frac{M(\alpha )}{1 - \alpha } \exp (-ct) w \left( \frac{\exp ((w+c)s)}{w+c} |_0^t \right) .\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akman, T., Yıldız, B. & Baleanu, D. New discretization of Caputo–Fabrizio derivative. Comp. Appl. Math. 37, 3307–3333 (2018). https://doi.org/10.1007/s40314-017-0514-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0514-1

Keywords

Navigation