Skip to main content
Log in

Negative Imaginary Theory-Based Proportional Resonant Controller for Voltage Control of Three-Phase Islanded Microgrid

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper demonstrates the design of robust proportional resonant (PR) controller using negative imaginary (NI) theorem for voltage control of three-phase islanded microgrid (MG) application. While operating MG as the islanded mode, different types of random and unknown load dynamics affect the MG. These loads eventually deteriorate the proper execution of MG-inducing disturbances in voltage and current. Therefore, to improve the performance of the three-phase MG, a simple, second-order controller is designed with the combination of NI theory and PR (NI–PR) controller. This controller is capable of providing higher level of damping as well as excellent stability properties. The stability and effectiveness of this controller are examined through imposing uncertainties, in terms of several load dynamics as well as different fault conditions. The comparison with respect to linear quadratic regulator and model predictive controller also ascertains the robustness of the designed controller. The NI–PR controller and the system are simulated in MATLAB/SIMULINK platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed, T., Nishida, K., & Nanno, I. (2016). State-vector feedback gain analysis for deadbeat control of grid-integrated inverter with LCL filter. In 2016 18th European conference on power electronics and applications (EPE’16 ECCE Europe) (pp. 1–9). IEEE.

  • Alhamrouni, I., Hairullah, M., Omar, N., Salem, M., Jusoh, A., & Sutikno, T. (2019). Modelling and design of PID controller for voltage control of AC hybrid micro-grid. International Journal of Power Electronics and Drive Systems, 10(1), 151.

    Google Scholar 

  • Al Hassan, H. A., Alharbi, T., Morello, S. A., Mac, Z. H., & Grainger, B. M. (2018). Linear quadratic integral voltage control of islanded AC microgrid under large load changes. In 2018 9th IEEE international symposium on power electronics for distributed generation systems (PEDG) (pp. 1–5). IEEE.

  • Andani, M. T., Pourgharibshahi, H., Ramezani, Z., & Zargarzadeh, H. (2018). Controller design for voltage-source converter using LQG/LTR. In 2018 IEEE texas power and energy conference (TPEC) (pp. 1–6). IEEE.

  • Araújo, J. R., Silva, E. N., Rodrigues, A. B., & da Silva, M. G. (2017). Assessment of the impact of microgrid control strategies in the power distribution reliability indices. Journal of Control, Automation and Electrical Systems, 28(2), 271–283.

    Article  Google Scholar 

  • Awal, M., Yu, H., Tu, H., Lukic, S. M., & Husain, I. (2019). Hierarchical control for virtual oscillator based grid-connected and islanded microgrids. IEEE Transactions on Power Electronics, 35(1), 988–1001.

    Article  Google Scholar 

  • Bairagi, A. K., Sheikh, M. R. I., Habib, M. A., & Basu, A. (2019). High-performance P+ resonant controller design for single-phase islanded microgrid. Journal of Control, Automation and Electrical Systems, 30(4), 589–600.

    Article  Google Scholar 

  • Bhikkaji, B., Moheimani, S. R., & Petersen, I. R. (2011). A negative imaginary approach to modeling and control of a collocated structure. IEEE/ASME Transactions on Mechatronics, 17(4), 717–727.

    Article  Google Scholar 

  • Bidram, A., & Davoudi, A. (2012). Hierarchical structure of microgrids control system. IEEE Transactions on Smart Grid, 3(4), 1963–1976.

    Article  Google Scholar 

  • Bouchebbat, R., & Gherbi, S. (2017). A novel optimal control and management strategy of stand-alone hybrid PV/wind/diesel power system. Journal of Control, Automation and Electrical Systems, 28(2), 284–296.

    Article  Google Scholar 

  • Chaturvedi, S., Fulwani, D., & Guerrero, J. M. (2020). Adaptive-sliding-mode-control based output impedance shaping for ripple management in DC microgrids affected by inverter loads. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2020.2982414.

  • Coelho, F. C., da Silva Junior, I. C., Dias, B. H., & Peres, W. B. (2018). Optimal distributed generation allocation using a new metaheuristic. Journal of Control, Automation and Electrical Systems, 29(1), 91–98.

    Article  Google Scholar 

  • Das, S. K., Pota, H. R., & Petersen, I. R. (2015). Multivariable negative-imaginary controller design for damping and cross coupling reduction of nanopositioners: A reference model matching approach. IEEE/ASME Transactions on Mechatronics, 20(6), 3123–3134.

    Article  Google Scholar 

  • Dash, P., Barik, S., & Patnaik, R. (2014). Detection and classification of islanding and nonislanding events in distributed generation based on fuzzy decision tree. Journal of Control, Automation and Electrical Systems, 25(6), 699–719.

    Article  Google Scholar 

  • Delavari, H., & Naderian, S. (2019). Backstepping fractional sliding mode voltage control of an islanded microgrid. IET Generation, Transmission & Distribution, 13(12), 2464–2473.

    Article  Google Scholar 

  • Dragičević, T. (2017). Model predictive control of power converters for robust and fast operation of AC microgrids. IEEE Transactions on Power Electronics, 33(7), 6304–6317.

    Article  Google Scholar 

  • Duan, J., Wang, C., Xu, H., Liu, W., Xue, Y., Peng, J. C., et al. (2017). Distributed control of inverter-interfaced microgrids based on consensus algorithm with improved transient performance. IEEE Transactions on Smart Grid, 10(2), 1303–1312.

    Article  Google Scholar 

  • Hosen, M., Abir, M., Rana, M., & Ali, M. (2019). An optimal control of three phase islanded microgrid system. In 2019 International conference on electrical, computer and communication engineering (ECCE) (pp. 1–5). IEEE.

  • Hossain, M. A., & Pota, H. R. (2015). Voltage tracking of a single-phase inverter in an islanded microgrid. International Journal of Renewable Energy Research (IJRER), 5(3), 806–814.

    Google Scholar 

  • Islam, M., Huda, M., Hasan, J., Sadi, M. A. H., AbuHussein, A., Roy, T. K., et al. (2020a). Fault ride through capability improvement of DFIG based wind farm using nonlinear controller based bridge-type flux coupling non-superconducting fault current limiter. Energies, 13(7), 1696.

    Article  Google Scholar 

  • Islam, M. R., Abir, D. D., Islam, M. R., Hasan, J., Huda, M. N., Muttaqi, K. M., & Sutanto, D. (2020b). Enhancement of FRT capability of DFIG based wind farm by a hybrid superconducting fault current limiter with bias magnetic field. In 2020 IEEE international conference on power electronics, smart grid and renewable energy (PESGRE2020) (pp. 1–6). IEEE.

  • Islam, M. R., Hasan, J., Huda, M. N., & Sadi, M. A. H. (2019). Fault ride through capability improvement of DFIG based wind farms using active power controlled bridge type fault current limiter. In 2019 North American power symposium (NAPS) (pp. 1–6). IEEE.

  • Islam, M. R., Hasan, J., Shipon, M. R. R., Sadi, M. A. H., AbuHussein, A., & Roy, T. K. (2020c). Neuro fuzzy logic controlled parallel resonance type fault current limiter to improve the fault ride through capability of DFIG based wind farm. IEEE Access, 8, 115314–115334.

    Article  Google Scholar 

  • Islam, M. R., Hasan, M. M., Badal, F. R., Das, S. K., & Ghosh, S. K. (2020d). A blended improved H5 topology with ilqg controller to augment the performance of microgrid system for grid-connected operations. IEEE Access, 8, 69639–69660.

    Article  Google Scholar 

  • Kabalci, E. (2020). Hierarchical control in microgrid. In Microgrid architectures, control and protection methods (pp. 381–401). Springer.

  • Kalla, U. K., Singh, B., Murthy, S. S., Jain, C., & Kant, K. (2017). Adaptive sliding mode control of standalone single-phase microgrid using hydro, wind, and solar PV array-based generation. IEEE Transactions on Smart Grid, 9(6), 6806–6814.

    Article  Google Scholar 

  • Karimi, H., Davison, E. J., & Iravani, R. (2009). Multivariable servomechanism controller for autonomous operation of a distributed generation unit: Design and performance evaluation. IEEE Transactions on Power Systems, 25(2), 853–865.

    Article  Google Scholar 

  • Kim, J., Hong, J., & Kim, H. (2016). Improved direct deadbeat voltage control with an actively damped inductor-capacitor plant model in an islanded AC microgrid. Energies, 9(11), 978.

    Article  Google Scholar 

  • Kumar, B., & Bhongade, S. (2016). Load disturbance rejection based PID controller for frequency regulation of a microgrid. In 2016 Biennial international conference on power and energy systems: Towards sustainable energy (PESTSE) (pp. 1–6). IEEE.

  • Kumar, N., Saha, T. K., & Dey, J. (2018). Control, implementation, and analysis of a dual two-level photovoltaic inverter based on modified proportional-resonant controller. IET Renewable Power Generation, 12(5), 598–604.

    Article  Google Scholar 

  • Li, H., Eseye, A. T., Zhang, J., & Zheng, D. (2017). Optimal energy management for industrial microgrids with high-penetration renewables. Protection and Control of Modern Power Systems, 2(1), 12.

    Article  Google Scholar 

  • Li, Q., Chen, F., Chen, M., Guerrero, J. M., & Abbott, D. (2015). Agent-based decentralized control method for islanded microgrids. IEEE Transactions on Smart Grid, 7(2), 637–649.

    Google Scholar 

  • Patarroyo-Montenegro, J. F., Salazar-Duque, J. E., & Andrade, F. (2018). LQR controller with optimal reference tracking for inverter-based generators on islanded-mode microgrids. In 2018 IEEE ANDESCON (pp. 1–5). IEEE.

  • Petersen, I. R., & Lanzon, A. (2010). Feedback control of negative-imaginary systems. IEEE Control Systems Magazine, 30(5), 54–72.

    Article  MathSciNet  Google Scholar 

  • Photovoltaics, D. G., & Storage, E. (2009). IEEE application guide for IEEE std 1547™, IEEE standard for interconnecting distributed resources with electric power systems. https://doi.org/10.1109/IEEESTD.2008.4816078.

  • Raji, A. K., & Luta, D. N. (2019). Modeling and optimization of a community microgrid components. Energy Procedia, 156, 406–411.

    Article  Google Scholar 

  • Ramesh, V., & Mandava, S. (2015). Microgrid design and control using a discrete proportional resonant controller. International Journal of Renewable Energy Research (IJRER), 5(4), 1041–1048.

    Google Scholar 

  • Sarkar, S. K., Roni, M. H. K., Datta, D., Das, S. K., & Pota, H. R. (2018). Improved design of high-performance controller for voltage control of islanded microgrid. IEEE Systems Journal, 13(2), 1786–1795.

    Article  Google Scholar 

  • Sheela, A., Vijayachitra, S., & Revathi, S. (2015). H-infinity controller for frequency and voltage regulation in grid-connected and islanded microgrid. IEEJ Transactions on Electrical and Electronic Engineering, 10(5), 503–511.

    Article  Google Scholar 

  • Stojić, D., Milinković, M., Veinović, S., & Klasnić, I. (2016). Novel proportional-integral-resonant current controller for three phase PWM converters. In 2016 4th International symposium on environmental friendly energies and applications (EFEA) (pp. 1–4). IEEE.

  • Tran, T. V., Yoon, S. J., & Kim, K. H. (2018). An LQR-based controller design for an LCL-filtered grid-connected inverter in discrete-time state-space under distorted grid environment. Energies, 11(8), 2062.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Yah-Ya Ul Haque.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, M.YY., Islam, M.R., Hasan, J. et al. Negative Imaginary Theory-Based Proportional Resonant Controller for Voltage Control of Three-Phase Islanded Microgrid. J Control Autom Electr Syst 32, 214–226 (2021). https://doi.org/10.1007/s40313-020-00631-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-020-00631-7

Keywords

Navigation