Skip to main content

Advertisement

Log in

Maximum Penetration Level Evaluation of Hybrid Renewable DGs of Radial Distribution Networks Considering Voltage Stability

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The issues regarding generation uncertainties associated with wind energy and solar photovoltaic (PV) systems along with load demand uncertainties are considered in this paper to evaluate the maximum penetration of renewable energy resources. The nodes which are less voltage stable are considered as the most suitable locations for distributed generations (DGs) placement. For identification of these critical nodes, a voltage stability index (VSI) has been utilized. To analyze the voltage profile, power losses and system voltage stability with large penetration of the wind energy and solar PV into the distribution networks, a probabilistic-based approach has been adopted. The penetration limit depends upon the type of DG that is connected to the distribution network. Usually, the integration of DGs reduces the power losses in the network, however as penetration level increases, the power losses begins to increase. The detailed mathematical models of wind and solar PV-based renewable resources are used. The Hong’s \(2m+1\) point estimation method combined with Cornish–Fisher expansion is adopted in this paper to conduct the probabilistic studies. The effectiveness of the method is validated through IEEE 33-node radial distribution test network for four different scenarios. The results obtained have been verified and compared with Monte Carlo simulation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

APL:

Active power loss

CDF:

Cumulative distribution function

CPF:

Continuous power flow

DG:

Distributed generation

EDF:

Empirical distribution function

MCS:

Monte Carlo simulation

OLTC:

On-load tap changer

PDF:

Probability density function

PEM:

Point estimation method

PL:

Penetration level

PLF:

Probabilistic load flow

PV:

Photovoltaic

SRSM:

Stochastic response surface method

VSI:

Voltage stability index

WT:

Wind turbine

References

  • Almeida, A. B., Valenca de Lorenci, E., Leme, R. C., Zambroni De Souza, A. C., Lima Lopes, B. I., & Lo, K. (2013). Probabilistic voltage stability assessment considering renewable sources with the help of PV and QV curves. IET Renewable Power Generation, 7(5), 521–530.

    Article  Google Scholar 

  • Atwa, Y. M., & El-Saadany, E. F. (2010). Optimal allocation of ESS in distribution system with a high penetration of wind energy. IEEE Transactions on Power Systems, 25(4), 1815–1822.

    Article  Google Scholar 

  • Atwa, Y. M., El-Saadany, E. F., Salmu, M. M. A., & Seethapathy, R. (2010). Optimal renewable resource mix for distribution system energy loss minimization. IEEE Transactions on Power Systems, 25(1), 360–370.

    Article  Google Scholar 

  • Ayres, H. M., Freitas, W., De Almeida, M. C., & Da Silva, L. C. P. (2010). Method for determining the maximum allowable penetration level of distributed generation without steady state voltage violations. IET Generation, Transmission & Distribution, 4(4), 495–508.

    Article  Google Scholar 

  • Baran, M. E., & Wu, F. F. (1989). Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Transactions on Power Delivery, 4(2), 1401–1407.

    Article  Google Scholar 

  • Bett, P. E., & Thornton, H. E. (2016). The climatological relationships between wind and solar energy supply in Britain. Renewable Energy, 87, 96–110.

    Article  Google Scholar 

  • Chakravorty, M., & Das, D. (2000). Voltage stability analysis of radial distribution networks. International Journal of Electrical Power & Energy Systems, 23, 129–135.

    Article  Google Scholar 

  • Das, D., Kothari, D. P., & Kalam, A. (1995). Simple and efficient method for load flow solution of radial distribution network. International Journal of Electrical Power & Energy Systems, 17(5), 335–346.

    Article  Google Scholar 

  • Delgado, C., & Dominguez Navarro, J. A. (2014). Point estimate method for probabilistic load flow of an unbalanced power distribution system with correlated wind and solar sources. International Journal of Electrical Power & Energy Systems, 61, 267–278.

    Article  Google Scholar 

  • Gaunt, C. T., Namanya, E., & Theman, R. (2017). Voltage modelling of L.V. feeders with dispersed generation: Limits of penetration of randomly connected photovoltaic generation. Electric Power Systems Research, 143, 1–6.

    Article  Google Scholar 

  • Haesen, E., Bastiaensen, C., Driesen, J., & Belmans, R. (2009). A probabilistic formulation of load margins in power systems with stochastic generation. IEEE Transactions on Power Systems, 24(2), 951–958.

    Article  Google Scholar 

  • Hatziargyriou, N. D., & Karakatsanis, T. S. (1998). Probabilistic load flow for assessment of voltage instability. IEE Proceedings-Generation Transmission & Distribution, 145(2), 196–202.

    Article  Google Scholar 

  • Hoke, A., Butler, R., Hambrick, L., & Kroposki, B. (2013). Steady state analysis of maximum photovoltaic penetration levels on typical distribution feeders. IEEE Transactions on Sustainable Energy, 4(2), 350–357.

    Article  Google Scholar 

  • Hung, D. Q., Mithulananthan, N., & Lee, K. Y. (2014). Determining PV penetration for distribution system with time varying load models. IEEE Transactions on Power Systems, 29(6), 3048–3057.

    Article  Google Scholar 

  • Kataoka, Y. (2003). A probabilistic nodal loading model and worst case solutions for electric power system voltage stability assessment. IEEE Transactions on Power Systems, 18(4), 1507–1514.

    Article  Google Scholar 

  • Kolenc, M., Papic, I., & Blazic, B. (2015). Assessment of maximum distributed generation penetration levels in low voltage network using a probabilistic approach. International Journal of Electrical Power & Energy Systems, 64, 505–515.

    Article  Google Scholar 

  • Lamberti, F., Calderaro, V., Galdi, V., Piccolo, A., & Graditi, G. (2015). Impact analysis of distributed PV and energy storage systems in unbalanced LV networks. In Proceedings of IEEE Eindhoven Power Tech (pp. 1–6), Eindhoven, Netherlands.

  • Liew, S. N., & Strbac, G. (2002). Maximum penetration of wind generation in existing distribution network. IEE Proceedings-Generation, Trasmission & Distribution, 149(3), 256–262.

    Article  Google Scholar 

  • Liu, K., Sheng, W., Hu, L., Liu, Y., Meng, X., & Jia, D. (2015). Simplified probabilistic voltage stability evaluation considering variable renewable distributed generation in distribution systems. IET Generation, Transmission & Distribution, 9(12), 1464–1473.

    Article  Google Scholar 

  • Mistry, K. D., & Roy, R. (2014). Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth. International Journal of Electrical Power & Energy Systems, 54, 505–515.

    Article  Google Scholar 

  • Morales, J. M., & Perez-Ruiz, J. (2007). Point estimate schemes to solve the probabilistic power flow. IEEE Transactions on Power Systems, 22(4), 1594–1601.

    Article  Google Scholar 

  • Ogunjuyigbe, A. S. O., Ayodele, T. R., & Akinola, O. O. (2016). Impact of distributed generators on the power loss and voltage profile of sub transmission network. Journal of Electrical Systems & Information Technology, 3, 94–107.

    Article  Google Scholar 

  • Procopiou, A. T., & Ochoa, L. F. (2017). Voltage control in PV rich LV networks without remote monitoring. IEEE Transactions on Power Systems, 32(2), 1224–1236.

    Article  Google Scholar 

  • Ran, X., & Miao, S. (2015). Probabilistic evaluation for static voltage stability for unbalanced three phase distribution system. IET Generation, Transmission Distribution, 9(14), 2050–2059.

    Article  Google Scholar 

  • Rubinstein, R. Y. (1991). Simulation and the Monte Carlo method. New York: Wiley.

    Google Scholar 

  • Ruiz Rodriguez, F. J., Hernandez, J. C., & Jurado, F. (2012). Probabilistic load flow for photovoltaic distributed generation using the Cornish fisher expansion. Electrical Power Systems Research, 89, 129–138.

    Article  Google Scholar 

  • Schellenberg, A., Rosehart, W., & Aguado, J. (2005). Cumulant probabilistic optimal power flow (P-OPF) with Gaussian and gamma distributions. IEEE Transactions on Power Systems, 20(2), 773–781.

    Article  Google Scholar 

  • Su, C. L. (2005). Probabilistic load flow computation using point estimate method. IEEE Transactions on Power Systems, 20(4), 1843–1851.

    Article  Google Scholar 

  • Usaola, J. (2009). Probabilistic load flow with wind production uncertainty using cumulants and Cornish–Fisher expansion. Interantional Jouranl of Electrical Power & Energy Systems, 31(9), 474–481.

    Article  Google Scholar 

  • Wang, H., Xu, X., Yan, Z., Yang, Z., Feng, N., & Cui, Y. (2016). Probabilistic static voltage stability analysis considering the correlation of wind power. In Proceedings of the IEEE international conference on probabilistic methods applied to power systems PMAPS (pp. 1–6), Beijing, China.

  • Xiuhong, Z., Kewen, W., Ming, L., Wanhui, Y., & Tse, C. T. (2002). Two extended approaches for voltage stability studies of quadratic and probabilistic continuation load flow. In Proceedings of international conference on power system technology (pp. 1705–1709), Kunming, China.

  • Zhang, J. F., Tse, C. T., Wang, W., & Chung, C. Y. (2010). Voltage stability analysis based on probabilistic power flow and maximum entropy. IET Generation, Transmission & Distribution, 4(4), 530–537.

    Article  Google Scholar 

  • Zhang, P., & Lee, S. T. (2004). Probabilistic load flow computation using the method of combined cumulants and Gram Charlier expansion. IEEE Transactions on Power Systems, 19(1), 676–682.

    Article  Google Scholar 

  • Zio, E., Delfanti, M., Giorgi, L., Olivieri, V., & Sansavini, G. (2015). Monte Carlo simulation based probabilistic assessment of DG penetration in medium voltage distribution network. International Journal of Electrical Power & Energy Systems, 64, 852–860.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahiraj Singh Rawat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, M.S., Vadhera, S. Maximum Penetration Level Evaluation of Hybrid Renewable DGs of Radial Distribution Networks Considering Voltage Stability. J Control Autom Electr Syst 30, 780–793 (2019). https://doi.org/10.1007/s40313-019-00477-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-019-00477-8

Keywords

Navigation