Skip to main content

Advertisement

Log in

Functional Electrical Stimulation: Cardiorespiratory Adaptations and Applications for Training in Paraplegia

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Regular exercise can be broadly beneficial to health and quality of life in humans with spinal cord injury (SCI). However, exercises must meet certain criteria, such as the intensity and muscle mass involved, to induce significant benefits. SCI patients can have difficulty achieving these exercise requirements since the paralysed muscles cannot contribute to overall oxygen consumption. One solution is functional electrical stimulation (FES) and, more importantly, hybrid training that combines volitional arm and electrically controlled contractions of the lower limb muscles. However, it might be rather complicated for therapists to use FES because of the wide variety of protocols that can be employed, such as stimulation parameters or movements induced. Moreover, although the short-term physiological and psychological responses during different types of FES exercises have been extensively reported, there are fewer data regarding the long-term effects of FES. Therefore, the purpose of this brief review is to provide a critical appraisal and synthesis of the literature on the use of FES for exercise in paraplegic individuals. After a short introduction underlying the importance of exercise for SCI patients, the main applications and effects of FES are reviewed and discussed. Major findings reveal an increased physiological demand during FES hybrid exercises as compared with arms only exercises. In addition, when repeated within a training period, FES exercises showed beneficial effects on muscle characteristics, force output, exercise capacity, bone mineral density and cardiovascular parameters. In conclusion, there appears to be promising evidence of beneficial effects of FES training, and particularly FES hybrid training, for paraplegic individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization; The International Spinal Cord Society. International Perspectives on Spinal Cord Injury. http://apps.who.int/iris/bitstream/10665/94190/1/9789241564663_eng.pdf. Accessed 8 Apr 2014.

  2. Phillips WT, Burkett LN. Augmented upper body contribution to oxygen uptake during upper body exercise with concurrent leg functional electrical stimulation in persons with spinal cord injury. Spinal Cord. 1998;36:750–5.

    Article  CAS  PubMed  Google Scholar 

  3. Bauman WA, Kahn NN, Grimm DR, et al. Risk factors for atherogenesis and cardiovascular autonomic function in persons with spinal cord injury. Spinal Cord. 1999;37:601–16.

    Article  CAS  PubMed  Google Scholar 

  4. Mathias CJ, Frankel HL. Cardiovascular control in spinal man. Annu Rev Physiol. 1988;50:577–92.

    Article  CAS  PubMed  Google Scholar 

  5. Lehmann KG, Lane JG, Piepmeier JM, et al. Cardiovascular abnormalities accompanying acute spinal cord injury in humans: incidence, time course and severity. J Am Coll Cardiol. 1987;10:46–52.

    Article  CAS  PubMed  Google Scholar 

  6. Saltin B, Astrand PO. Maximal oxygen uptake in athletes. J Appl Physiol. 1967;23:353–8.

    CAS  PubMed  Google Scholar 

  7. Taylor JA, Picard G, Widrick JJ. Aerobic capacity with hybrid FES rowing in spinal cord injury: comparison with arms-only exercise and preliminary findings with regular training. PM R. 2011;3:817–24.

    PubMed  Google Scholar 

  8. Pimentel AE, Gentile CL, Tanaka H, et al. Greater rate of decline in maximal aerobic capacity with age in endurance-trained than in sedentary men. J Appl Physiol. 2003;94:2406–13.

    PubMed  Google Scholar 

  9. Lee MY, Myers J, Hayes A, et al. C-reactive protein, metabolic syndrome, and insulin resistance in individuals with spinal cord injury. J Spinal Cord Med. 2005;28:20–5.

    PubMed  Google Scholar 

  10. Manns PJ, McCubbin JA, Williams DP. Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil. 2005;86:1176–81.

    Article  PubMed  Google Scholar 

  11. Bauman WA, Spungen AM. Metabolic changes in persons after spinal cord injury. Phys Med Rehabil Clin N Am. 2000;11:109–40.

    CAS  PubMed  Google Scholar 

  12. Dudley-Javoroski S, Shields RK. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev. 2008;45:283–96.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Garland DE, Stewart CA, Adkins RH, et al. Osteoporosis after spinal cord injury. J Orthop Res. 1992;10:371–8.

    Article  CAS  PubMed  Google Scholar 

  14. Physical activity and health: a report of the surgeon general. Atlanta: Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion; 1996.

  15. Pollock ML, Miller HS, Linnerud AC, et al. Arm pedaling as an endurance training regimen for the disabled. Arch Phys Med Rehabil. 1974;55:418–24.

    CAS  PubMed  Google Scholar 

  16. American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30:975–91.

    Article  Google Scholar 

  17. Tanasescu M, Leitzmann MF, Rimm EB, et al. Exercise type and intensity in relation to coronary heart disease in men. JAMA. 2002;288:1994–2000.

    Article  PubMed  Google Scholar 

  18. Williams PT. Vigorous exercise, fitness and incident hypertension, high cholesterol, and diabetes. Med Sci Sports Exerc. 2008;40:998–1006.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hultman E, Sjöholm H. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. J Physiol. 1983;345:525–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Babault N, Cometti G, Bernardin M, et al. Effects of electromyostimulation training on muscle strength and power of elite rugby players. J Strength Cond Res. 2007;21:431–7.

    PubMed  Google Scholar 

  21. Babault N, Cometti C, Maffiuletti NA, et al. Does electrical stimulation enhance post-exercise performance recovery? Eur J Appl Physiol. 2011;111:2501–7.

    Article  PubMed  Google Scholar 

  22. Deley G, Kervio G, Verges B, Hannequin A, Petitdant MF, Salmi-Belmihoub S, et al. Comparison of low-frequency electrical myostimulation and conventional aerobic exercise training in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2005;12:226–33.

    PubMed  Google Scholar 

  23. Deley G, Cometti C, Fatnassi A, et al. Effects of combined electromyostimulation and gymnastics training in prepubertal girls. J Strength Cond Res. 2011;25:520–6.

    Article  PubMed  Google Scholar 

  24. Liberson W, Holmquest H, Scot D, et al. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–5.

    CAS  PubMed  Google Scholar 

  25. Rattay F, Resatz S, Lutter P, et al. Mechanisms of electrical stimulation with neural prostheses. Neuromodulation. 2003;6:42–56.

    Article  CAS  PubMed  Google Scholar 

  26. Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110:223–34.

    Article  PubMed  Google Scholar 

  27. Crameri RM, Cooper P, Sinclair PJ, et al. Effect of load during electrical stimulation training in spinal cord injury. Muscle Nerve. 2004;29:104–11.

    Article  PubMed  Google Scholar 

  28. Bélanger M, Stein RB, Wheeler GD, et al. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil. 2000;81:1090–8.

    Article  PubMed  Google Scholar 

  29. Thomas AJ, Davis GM, Sutton JR. Cardiovascular and metabolic responses to electrical stimulation-induced leg exercise in spinal cord injury. Methods Inf Med. 1997;36:372–5.

    CAS  PubMed  Google Scholar 

  30. Phillips W, Burkett LN, Munro R, et al. Relative changes in blood flow with functional electrical stimulation during exercise of the paralyzed lower limbs. Paraplegia. 1995;33:90–3.

    Article  CAS  PubMed  Google Scholar 

  31. Sabatier MJ, Stoner L, Mahoney ET, et al. Electrically stimulated resistance training in SCI individuals increases muscle fatigue resistance but not femoral artery size or blood flow. Spinal Cord. 2006;44:227–33.

    Article  CAS  PubMed  Google Scholar 

  32. Andersen JL, Mohr T, Biering-Sørensen F, et al. Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflugers Arch. 1996;431:513–8.

    Article  CAS  PubMed  Google Scholar 

  33. Crameri RM, Weston A, Climstein M, et al. Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand J Med Sci Sports. 2002;12:316–22.

    Article  CAS  PubMed  Google Scholar 

  34. Hooker SP, Figoni SF, Rodgers MM, et al. Physiologic effects of electrical stimulation leg cycle exercise training in spinal cord injured persons. Arch Phys Med Rehabil. 1992;73:470–6.

    CAS  PubMed  Google Scholar 

  35. Mutton DL, Scremin AM, Barstow TJ, et al. Physiologic responses during functional electrical stimulation leg cycling and hybrid exercise in spinal cord injured subjects. Arch Phys Med Rehabil. 1997;78:712–8.

    Article  CAS  PubMed  Google Scholar 

  36. Jung DW, Park DS, Lee BS, et al. Development of a motor driven rowing machine with automatic functional electrical stimulation controller for individuals with paraplegia; a preliminary study. Ann Rehabil Med. 2012;36:379–85.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Isakov E, Mizrahi J, Najenson J. Biomechanical and physiological evaluation of FES-activated paraplegic patients. J Rehabil Res Dev. 1986;23:9–19.

    CAS  PubMed  Google Scholar 

  38. Binder-Macleod SA, Barker CB 3rd. Use of a catchlike property of human skeletal muscle to reduce fatigue. Muscle Nerve. 1991;14:850–7.

    Article  CAS  PubMed  Google Scholar 

  39. Scott WB, Lee SC, Johnston TE, et al. Switching stimulation patterns improves performance of paralyzed human quadriceps muscle. Muscle Nerve. 2005;31:581–8.

    Article  PubMed  Google Scholar 

  40. Gregory CM, Dixon W, Bickel CS. Impact of varying pulse frequency and duration on muscle torque production and fatigue. Muscle Nerve. 2007;35:504–9.

    Article  PubMed  Google Scholar 

  41. Bickel CS, Gregory CM, Azuero A. Matching initial torque with different stimulation parameters influences skeletal muscle fatigue. J Rehabil Res Dev. 2012;49:323–31.

    Article  PubMed  Google Scholar 

  42. Lagerquist O, Collins DF. Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation. Muscle Nerve. 2010;42:886–93.

    Article  PubMed  Google Scholar 

  43. Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 2012;85:201–15.

    PubMed Central  PubMed  Google Scholar 

  44. Higuchi Y, Kitamura S, Kawashima N, et al. Cardiorespiratory responses during passive walking-like exercise in quadriplegics. Spinal Cord. 2006;44:480–6.

    Article  CAS  PubMed  Google Scholar 

  45. Kjaer M, Mohr T, Biering-Sorensen F, et al. Muscle enzyme adaptation to training and tapering-off in spinal-cord-injured humans. Eur J Appl Physiol. 2001;84:482–6.

    Article  CAS  PubMed  Google Scholar 

  46. Raymond J, Davis GM, Fahey A, et al. Oxygen uptake and heart rate responses during arm vs combined arm/electrically stimulated leg exercise in people with paraplegia. Spinal Cord. 1997;35:680–5.

    Article  CAS  PubMed  Google Scholar 

  47. Davis GM, Servedio FJ, Glaser RM, et al. Cardiovascular responses to arm cranking and FNS-induced leg exercise in paraplegics. J Appl Physiol. 1990;69:671–7.

    CAS  PubMed  Google Scholar 

  48. Hopman MT, Groothuis JT, Flendrie M, et al. Increased vascular resistance in paralyzed legs after spinal cord injury is reversible by training. J Appl Physiol. 2002;93:1966–72.

    PubMed  Google Scholar 

  49. Wheeler GD, Andrews B, Lederer R, et al. Functional electric stimulation-assisted rowing: increasing cardiovascular fitness through functional electric stimulation rowing training in persons with spinal cord injury. Arch Phys Med Rehabil. 2002;83:1093–9.

    Article  PubMed  Google Scholar 

  50. Verellen J, Vanlanderwijck Y, Andrews B. Peak physical work capacity during arm ergometry, FES-cycling, and two hybrid exercise conditions in spinal cord injured. Disabil Rehabil Assist Tech. 2007;2:127–32.

    Article  Google Scholar 

  51. Ragnarsson KT. Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord. 2008;46:255–74.

    Article  CAS  PubMed  Google Scholar 

  52. Hunt KJ, Saunders BA, Perret C, et al. Energetics of paraplegic cycling: a new theoretical framework and efficiency characterization for untrained subjects. Eur J Appl Physiol. 2007;101:277–85.

    Article  CAS  PubMed  Google Scholar 

  53. Berry HR, Perret C, Saunders BA. Cardiorespiratory and power adaptations to stimulated cycle training in paraplegia. Med Sci Sports Exerc. 2008;40:1573–80.

    Article  PubMed  Google Scholar 

  54. Laskin JJ, Ashley EA, Olenik LM. Electrical stimulation-assisted rowing exercise in spinal cord injured people. A pilot study. Paraplegia. 1993;31:534–41.

    Article  CAS  PubMed  Google Scholar 

  55. Halliday SE, Zavatsky AB, Hase K. Can functional electric stimulation assisted rowing reproduce a race-winning rowing stroke? Arch Phys Med Rehabil. 2004;85:1265–72.

    Article  PubMed  Google Scholar 

  56. Jacobs PL, Nash MS, Rusinowski JW. Circuit training provides cardiorespiratory and strength benefits in persons with paraplegia. Med Sci Sports Exerc. 2001;33:711–7.

    Article  CAS  PubMed  Google Scholar 

  57. Rowell LB. Human circulation—regulation during physical stress. New York: Oxford University Press; 1986.

    Google Scholar 

  58. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  59. Raymond J, Davis GM, Van der Plas MN, et al. Carotid barroreflex control of heart rate and blood pressure during ES leg cycling in paraplegics. J Appl Physiol. 2000;88:957–65.

    CAS  PubMed  Google Scholar 

  60. Kjaer M, Pott F, Mohr T. Heart rate during exercise with leg vascular occlusion in spinal cord-injured humans. J Appl Physiol. 1999;86:806–11.

    CAS  PubMed  Google Scholar 

  61. Barstow TJ, Scremin AM, Mutton DL, et al. Peak and kinetic cardiorespiratory responses during arm and leg exercise in patients with spinal cord injury. Spinal Cord. 2000;38:340–5.

    Article  CAS  PubMed  Google Scholar 

  62. Psilopoulos V, Niewboer A. The effects of FES in spinal cord injury on cardiovascular responses: a literature review. Biol Exer. 2008;4:75–92.

    Article  Google Scholar 

  63. Rattan SN, Glaser RM, Collins SR. Hemodynamic effects of electrically stimulated leg muscles [abstract]. Fed Proc. 1985;44:1379.

    Google Scholar 

  64. Fornusek C, Davis GM. Cardiovascular and metabolic responses during functional electric stimulation cycling at different cadences. Arch Phys Med Rehabil. 2008;89:719–25.

    Article  PubMed  Google Scholar 

  65. Raymond J, Davis GM, van der Pias M. Cardiovascular responses during submaximal electrical stimulation-induced leg cycling in individuals with paraplegia. Clin Physiol Funct Imaging. 2002;22:92–8.

    Article  PubMed  Google Scholar 

  66. Delà F, Mohr T, Jensen CM, et al. Cardiovascular control during exercise: insights from spinal cord-injured humans. Circulation. 2003;107:2127–33.

    Article  PubMed  Google Scholar 

  67. Olive JL, Slade JM, Dudley GA, et al. Blood flow and muscle fatigue in SCI individuals during electrical stimulation. J Appl Physiol. 2003;94:701–8.

    PubMed  Google Scholar 

  68. Sheldahl LM, Ebert TJ, Cox B, et al. Effect of aerobic training on baroreflex regulation of cardiac and sympathetic function. J Appl Physiol. 1994;76:158–65.

    CAS  PubMed  Google Scholar 

  69. Convertino VA. Endurance exercise training: conditions of enhanced hemodynamic responses and tolerance to LBNP. Med Sci Sports Exerc. 1993;25:705–12.

    Article  CAS  PubMed  Google Scholar 

  70. Baldi JC, Jackson RD, Moraille R, et al. Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation. Spinal Cord. 1998;36:463–9.

    Article  CAS  PubMed  Google Scholar 

  71. Chilibeck PD, Jeon J, Weiss C, et al. Histochemical changes in muscle of individuals with spinal cord injury following functional electrical stimulated exercise training. Spinal Cord. 1999;37:264–8.

    Article  CAS  PubMed  Google Scholar 

  72. Mohr T, Andersen JL, Biering-Sorensen F, et al. Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord. 1997;35:1–16.

    Article  CAS  PubMed  Google Scholar 

  73. Bloomfield SA, Mysiw WJ, Jackson RD. Bone mass and endocrine adaptations to training in spinal cord injured individuals. Bone. 1996;19:61–8.

    Article  CAS  PubMed  Google Scholar 

  74. Lai CH, Chang WH, Chan WP, et al. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med. 2010;42:150–4.

    Article  PubMed  Google Scholar 

  75. Morse LR, Gupta R, Battaglino RA, et al. FES-rowing improves bone micro architecture and strength in the paralyzed lower extremity. 51st Annual Scientific Meeting of the International Spinal Cord Society; 2–5 Sep 2012; London.

  76. Hooker SP, Scremin AM, Mutton DL, et al. Peak and submaximal physiologic responses following electrical stimulation leg cycle ergometer training. J Rehabil Res Dev. 1995;32:361–6.

    CAS  PubMed  Google Scholar 

  77. Krauss JC, Robergs RA, Depaepe L, et al. Effects of electrical stimulation and upper body training after spinal cord injury. Med Sci Sports Exerc. 1993;25:1054–61.

    Article  CAS  PubMed  Google Scholar 

  78. Phillips AA, Krassioukov AV, Ainslie PN, et al. Baroreflex function after spinal cord injury. J Neurotrauma. 2012;29:2431–45.

    Article  PubMed  Google Scholar 

  79. Thijssen DH, Ellenkamp R, Kooijman M. A causal role for endothelin-1 in the vascular adaptation to skeletal muscle deconditioning in spinal cord injury. Arterioscler Thromb Vasc Biol. 2007;27:325–31.

    Article  CAS  PubMed  Google Scholar 

  80. Thijssen DH, Heesterbeek P, van Kuppevelt DJ, et al. Local vascular adaptations after hybrid training in spinal cord-injured subjects. Med Sci Sports Exerc. 2005;37:1112–8.

    Article  PubMed  Google Scholar 

  81. Gerrits HL, De Haan A, Sargeant AJ, et al. Peripheral vascular changes after electrically stimulated cycle training in people with spinal cord injury. Arch Phys Med Rehabil. 2001;82:832–9.

    Article  CAS  PubMed  Google Scholar 

  82. Ditor DS, Kamath MV, MacDonald MJ, et al. Effects of body weight-supported treadmill training on heart rate variability and blood pressure variability in individuals with spinal cord injury. J Appl Physiol. 2005;98:1519–25.

    Article  PubMed  Google Scholar 

  83. Ditor DS, MacDonald MJ, Kamath MV. The effects of body-weight supported treadmill training on cardiovascular regulation in individuals with motor-complete SCI. Spinal Cord. 2005;43:664–73.

    Article  CAS  PubMed  Google Scholar 

  84. Jeon JY, Hettinga D, Steadward RD, et al. Reduced plasma glucose and leptin after 12 weeks of functional electrical stimulation-rowing exercise training in spinal cord injury patients. Arch Phys Med Rehabil. 2010;91:1957–9.

    Article  PubMed  Google Scholar 

  85. Weiss C. Effects of acute moderate intensity FES-Leg cycle, arm crank, and hybrid ergometer exercise on lipid-lipoprotein profile in persons with spinal cord injury [master’s thesis]. Edmonton: University of Alberta; 1999.

    Google Scholar 

  86. Hamilton DW, Krauss JD, Price BA, et al. Psychological effects of CFES ergometry for individuals with spinal cord injuries. Palaestra. 1995;11:46–51.

    Google Scholar 

  87. Hartkopp A, Murphy RJ, Mohr T, et al. Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil. 1998;79:1133–6.

    Article  CAS  PubMed  Google Scholar 

  88. Ashley EA, Laskin JJ, Olenik LM, et al. Evidence of autonomic dysreflexia during functional electrical stimulation in individuals with spinal cord injuries. Paraplegia. 1993;31:593–605.

    Article  CAS  PubMed  Google Scholar 

  89. Bradley MB. The effect of participating in a functional electrical stimulation exercise program on affect in people with spinal cord injuries. Arch Phys Med Rehabil. 1994;75:676–9.

    Article  CAS  PubMed  Google Scholar 

  90. Sadowsky CL. Electrical stimulation in spinal cord injury. NeuroRehabilitation. 2001;16:165–9.

    CAS  PubMed  Google Scholar 

  91. Wahman K, Biguet G, Levi R. What promotes physical activity after spinal cord injury? An interview study from a patient perspective. Disabil Rehabil. 2006;28:481–8.

    Article  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no potential conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëlle Deley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deley, G., Denuziller, J. & Babault, N. Functional Electrical Stimulation: Cardiorespiratory Adaptations and Applications for Training in Paraplegia. Sports Med 45, 71–82 (2015). https://doi.org/10.1007/s40279-014-0250-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0250-2

Keywords

Navigation