Skip to main content
Log in

Restoring Function to Dopaminergic Neurons: Progress in the Development of Cell-Based Therapies for Parkinson’s Disease

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

There is escalating interest in cell-based therapies to restore lost dopamine inputs in Parkinson’s disease. This is based upon the rationale that implanting dopamine progenitors into the striatum can potentially improve dopamine-responsive motor symptoms. A rich body of data describing clinical trials of previous cell transplantation exists. These have included multiple cell sources for transplantation including allogeneic (human embryonic mesencephalic tissue, retinal pigment epithelial cells) and autologous (carotid body, adrenal medullary tissue) cells, as well as xenotransplantation. However, there are multiple limitations related to these cell sources, including availability of adequate numbers of cells for transplant, heterogeneity within cells transplanted, imprecisely defined mechanisms of action, and poor cell survival after transplantation in some cases. Nonetheless, evidence has accrued from a subset of trials to support the rationale for such a regenerative approach. Recent rapid advances in stem cell technology may now overcome these prior limitations. For example, dopamine neuron precursor cells for transplant can be generated from induced pluripotent cells and human embryonic stem cells. The benefits of these innovative approaches include: the possibility of scalability; a high degree of quality control; and improved understanding of mechanisms of action with rigorous preclinical testing. In this review, we focus on the potential for cell-based therapies in Parkinson’s disease to restore the function of dopaminergic neurons, we critically review previous attempts to harness such strategies, we discuss potential benefits and predicted limitations, and we address how previous roadblocks may be overcome to bring a cell-based approach to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barker RA, Parmar M, Studer L, Takahashi J. Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell. 2017;21(5):569–73. https://doi.org/10.1016/j.stem.2017.09.014.

    Article  CAS  PubMed  Google Scholar 

  2. Henchcliffe C, Parmar M. Repairing the brain: cell replacement using stem cell-based technologies. J Parkinsons Dis. 2018;8(s1):S131–7. https://doi.org/10.3233/JPD-181488.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):11–2. https://doi.org/10.1016/j.cger.2019.08.002.

    Article  Google Scholar 

  4. Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27(1):27–42. https://doi.org/10.1111/ene.14108.

    Article  CAS  PubMed  Google Scholar 

  5. Zesiewicz TA. Parkinson disease. Continuum (Minneap Minn). 2019;25(4):896–918. https://doi.org/10.1212/CON.0000000000000764.

    Article  PubMed  Google Scholar 

  6. Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, et al. International Parkinson and Movement Disorder Society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2018;33(8):1248–66. https://doi.org/10.1002/mds.27372.

    Article  CAS  PubMed  Google Scholar 

  7. Fishman P, Lipsman N. Focused ultrasound as an evolving therapy for Parkinson’s disease. Mov Disord. 2019;34(9):1241–2. https://doi.org/10.1002/mds.27809.

    Article  PubMed  Google Scholar 

  8. Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH. Human gene therapy approaches for the treatment of Parkinson’s disease: an overview of current and completed clinical trials. Parkinsonism Relat Disord. 2019;66:16–24. https://doi.org/10.1016/j.parkreldis.2019.07.018.

    Article  PubMed  Google Scholar 

  9. Marques CR, Marote A, Mendes-Pinheiro B, Teixeira FG, Salgado AJ. Cell secretome based approaches in Parkinson’s disease regenerative medicine. Expert Opin Biol Ther. 2018;18(12):1235–45. https://doi.org/10.1080/14712598.2018.1546840.

    Article  CAS  PubMed  Google Scholar 

  10. Barker RA, Barrett J, Mason SL, Bjorklund A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 2013;12(1):84–91. https://doi.org/10.1016/S1474-4422(12)70295-8.

    Article  CAS  PubMed  Google Scholar 

  11. Parmar M. Towards stem cell based therapies for Parkinson’s disease. Development. 2018;145(1):ev.156117. https://doi.org/10.1242/dev.156117.

    Article  CAS  Google Scholar 

  12. Steinbeck JA, Choi SJ, Mrejeru A, Ganat Y, Deisseroth K, Sulzer D, et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat Biotechnol. 2015;33(2):204–9. https://doi.org/10.1038/nbt.3124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480(7378):547–51. https://doi.org/10.1038/nature10648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell. 2015;16(3):269–74. https://doi.org/10.1016/j.stem.2015.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adler AF, Cardoso T, Nolbrant S, Mattsson B, Hoban DB, Jarl U, et al. hESC-derived dopaminergic transplants integrate into basal ganglia circuitry in a preclinical model of Parkinson’s disease. Cell Rep. 2019;28(13):3462–73.e5. https://doi.org/10.1016/j.celrep.2019.08.058.

    Article  CAS  Google Scholar 

  16. Bohnen NI, Muller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology. 2009;73(20):1670–6. https://doi.org/10.1212/WNL.0b013e3181c1ded6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bohnen NI, Kanel P, Muller M. Molecular imaging of the cholinergic system in Parkinson’s disease. Int Rev Neurobiol. 2018;141:211–50. https://doi.org/10.1016/bs.irn.2018.07.027.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brundin P, Barbin G, Strecker RE, Isacson O, Prochiantz A, Bjorklund A. Survival and function of dissociated rat dopamine neurones grafted at different developmental stages or after being cultured in vitro. Brain Res. 1988;467(2):233–43. https://doi.org/10.1016/0165-3806(88)90027-2.

    Article  CAS  PubMed  Google Scholar 

  19. Brundin P, Isacson O, Gage FH, Prochiantz A, Bjorklund A. The rotating 6-hydroxydopamine-lesioned mouse as a model for assessing functional effects of neuronal grafting. Brain Res. 1986;366(1–2):346–9. https://doi.org/10.1016/0006-8993(86)91316-8.

    Article  CAS  PubMed  Google Scholar 

  20. Brundin P, Nilsson OG, Strecker RE, Lindvall O, Astedt B, Bjorklund A. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp Brain Res. 1986;65(1):235–40. https://doi.org/10.1007/bf00243848.

    Article  CAS  PubMed  Google Scholar 

  21. Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science. 1979;204(4393):643–7. https://doi.org/10.1126/science.571147.

    Article  CAS  PubMed  Google Scholar 

  22. Bjorklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 1979;177(3):555–60. https://doi.org/10.1016/0006-8993(79)90472-4.

    Article  CAS  PubMed  Google Scholar 

  23. Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science. 1990;247(4942):574–7.

    Article  CAS  Google Scholar 

  24. Lindvall O, Rehncrona S, Brundin P, Gustavii B, Astedt B, Widner H, et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease: a detailed account of methodology and a 6-month follow-up. Arch Neurol. 1989;46(6):615–31.

    Article  CAS  Google Scholar 

  25. Stromberg I, Herrera-Marschitz M, Hultgren L, Ungerstedt U, Olson L. Adrenal medullary implants in the dopamine-denervated rat striatum. I. Acute catecholamine levels in grafts and host caudate as determined by HPLC-electrochemistry and fluorescence histochemical image analysis. Brain Res. 1984;297(1):41–51. https://doi.org/10.1016/0006-8993(84)90541-9.

    Article  CAS  PubMed  Google Scholar 

  26. Herrera-Marschitz M, Stromberg I, Olsson D, Ungerstedt U, Olson L. Adrenal medullary implants in the dopamine-denervated rat striatum. II. Acute behavior as a function of graft amount and location and its modulation by neuroleptics. Brain Res. 1984;297(1):53–61. https://doi.org/10.1016/0006-8993(84)90542-0.

    Article  CAS  PubMed  Google Scholar 

  27. Morihisa JM, Nakamura RK, Freed WJ, Mishkin M, Wyatt RJ. Adrenal medulla grafts survive and exhibit catecholamine-specific fluorescence in the primate brain. Exp Neurol. 1984;84(3):643–53. https://doi.org/10.1016/0014-4886(84)90211-5.

    Article  CAS  PubMed  Google Scholar 

  28. Goetz CG, Olanow CW, Koller WC, Penn RD, Cahill D, Morantz R, et al. Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson’s disease. N Engl J Med. 1989;320(6):337–41. https://doi.org/10.1056/NEJM198902093200601.

    Article  CAS  PubMed  Google Scholar 

  29. Madrazo I, Drucker-Colin R, Diaz V, Martinez-Mata J, Torres C, Becerril JJ. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N Engl J Med. 1987;316(14):831–4. https://doi.org/10.1056/NEJM198704023161402.

    Article  CAS  PubMed  Google Scholar 

  30. Lindvall O, Widner H, Rehncrona S, Brundin P, Odin P, Gustavii B, et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: one-year clinical and neurophysiological observations in two patients with putaminal implants. Ann Neurol. 1992;31(2):155–65. https://doi.org/10.1002/ana.410310206.

    Article  CAS  PubMed  Google Scholar 

  31. Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Wells TH, Barrett JN, et al. Transplantation of human fetal dopamine cells for Parkinson’s disease: results at 1 year. Arch Neurol. 1990;47(5):505–12. https://doi.org/10.1001/archneur.1990.00530050021007.

    Article  CAS  PubMed  Google Scholar 

  32. Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi JX, et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med. 1992;327(22):1549–55. https://doi.org/10.1056/NEJM199211263272202.

    Article  CAS  PubMed  Google Scholar 

  33. Molina H, Quinones R, Ortega I, Alvarez L, Munoz J, Gonzalez C, et al. Computer assisted CT-guided stereotactic transplantation of foetal ventral mesencephalon to the caudate nucleus and putamen in Parkinson’s disease. Acta Neurochir Suppl (Wien). 1993;58:17–9.

    CAS  PubMed  Google Scholar 

  34. Spencer DD, Robbins RJ, Naftolin F, Marek KL, Vollmer T, Leranth C, et al. Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med. 1992;327(22):1541–8. https://doi.org/10.1056/NEJM199211263272201.

    Article  CAS  PubMed  Google Scholar 

  35. Peschanski M, Defer G, N’Guyen JP, Ricolfi F, Monfort JC, Remy P, et al. Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain. 1994;117(Pt 3):487–99.

    Article  Google Scholar 

  36. Mendez I, Dagher A, Hong M, Gaudet P, Weerasinghe S, McAlister V, et al. Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases. J Neurosurg. 2002;96(3):589–96. https://doi.org/10.3171/jns.2002.96.3.0589.

    Article  PubMed  Google Scholar 

  37. Barker RA, Drouin-Ouellet J, Parmar M. Cell-based therapies for Parkinson disease-past insights and future potential. Nat Rev Neurol. 2015;11(9):492–503. https://doi.org/10.1038/nrneurol.2015.123.

    Article  CAS  PubMed  Google Scholar 

  38. Wenning GK, Odin P, Morrish P, Rehncrona S, Widner H, Brundin P, et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol. 1997;42(1):95–107. https://doi.org/10.1002/ana.410420115.

    Article  CAS  PubMed  Google Scholar 

  39. Hagell P, Schrag A, Piccini P, Jahanshahi M, Brown R, Rehncrona S, et al. Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain. 1999;122(Pt 6):1121–32.

    Article  Google Scholar 

  40. Brundin P, Pogarell O, Hagell P, Piccini P, Widner H, Schrag A, et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain. 2000;123(Pt 7):1380–90.

    Article  Google Scholar 

  41. Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M, et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 2014;71(1):83–7. https://doi.org/10.1001/jamaneurol.2013.4749.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hallett PJ, Cooper O, Sadi D, Robertson H, Mendez I, Isacson O. Long-term health of dopaminergic neuron transplants in Parkinson’s disease patients. Cell Rep. 2014;7(6):1755–61. https://doi.org/10.1016/j.celrep.2014.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Henchcliffe C, Carter J, Hanineva A, Kang Y, Babich J, Gollomp SM, et al. Clinical and neuroimaging outcomes up to 18 years after fetal tissue transplant for Parkinson’s disease [abstract]. Mov Disord. 2016;31(Suppl. 2).

  44. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344(10):710–9. https://doi.org/10.1056/NEJM200103083441002.

    Article  CAS  PubMed  Google Scholar 

  45. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54(3):403–14. https://doi.org/10.1002/ana.10720.

    Article  PubMed  Google Scholar 

  46. Ma Y, Tang C, Chaly T, Greene P, Breeze R, Fahn S, et al. Dopamine cell implantation in Parkinson’s disease: long-term clinical and (18)F-FDOPA PET outcomes. J Nucl Med. 2010;51(1):7–15. https://doi.org/10.2967/jnumed.109.066811.

    Article  PubMed  Google Scholar 

  47. Martinez-Martin P, Jeukens-Visser M, Lyons KE, Rodriguez-Blazquez C, Selai C, Siderowf A, et al. Health-related quality-of-life scales in Parkinson’s disease: critique and recommendations. Mov Disord. 2011;26(13):2371–80. https://doi.org/10.1002/mds.23834.

    Article  PubMed  Google Scholar 

  48. Titova N, Martinez-Martin P, Katunina E, Chaudhuri KR. Advanced Parkinson’s or “complex phase” Parkinson’s disease? Re-evaluation is needed. J Neural Transm (Vienna). 2017;124(12):1529–37. https://doi.org/10.1007/s00702-017-1799-3.

    Article  Google Scholar 

  49. Lane EL, Winkler C. L-DOPA- and graft-induced dyskinesia following transplantation. Prog Brain Res. 2012;200:143–68. https://doi.org/10.1016/B978-0-444-59575-1.00007-7.

    Article  PubMed  Google Scholar 

  50. Barker RA, TRANSEURO Consortium. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease. Nat Med. 2019;25(7):1045–53. https://doi.org/10.1038/s41591-019-0507-2.

    Article  CAS  PubMed  Google Scholar 

  51. Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, et al. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med. 2010;2(38):38ra46. https://doi.org/10.1126/scitranslmed.3000976.

    Article  CAS  PubMed  Google Scholar 

  52. Backlund EO, Granberg PO, Hamberger B, Knutsson E, Martensson A, Sedvall G, et al. Transplantation of adrenal medullary tissue to striatum in parkinsonism: first clinical trials. J Neurosurg. 1985;62(2):169–73. https://doi.org/10.3171/jns.1985.62.2.0169.

    Article  CAS  PubMed  Google Scholar 

  53. Goetz CG, Stebbins GT 3rd, Klawans HL, Koller WC, Grossman RG, Bakay RA, et al. United Parkinson Foundation Neurotransplantation Registry on adrenal medullary transplants: presurgical, and 1- and 2-year follow-up. Neurology. 1991;41(11):1719–22.

    Article  CAS  Google Scholar 

  54. Stoddard SL, Ahlskog JE, Kelly PJ, Tyce GM, van Heerden JA, Zinsmeister AR, et al. Decreased adrenal medullary catecholamines in adrenal transplanted parkinsonian patients compared to nephrectomy patients. Exp Neurol. 1989;104(3):218–22.

    Article  CAS  Google Scholar 

  55. Kordower JH, Cochran E, Penn RD, Goetz CG. Putative chromaffin cell survival and enhanced host-derived TH-fiber innervation following a functional adrenal medulla autograft for Parkinson’s disease. Ann Neurol. 1991;29(4):405–12. https://doi.org/10.1002/ana.410290411.

    Article  CAS  PubMed  Google Scholar 

  56. Minguez-Castellanos A, Escamilla-Sevilla F, Hotton GR, Toledo-Aral JJ, Ortega-Moreno A, Mendez-Ferrer S, et al. Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. J Neurol Neurosurg Psychiatry. 2007;78(8):825–31. https://doi.org/10.1136/jnnp.2006.106021.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Arjona V, Minguez-Castellanos A, Montoro RJ, Ortega A, Escamilla F, Toledo-Aral JJ, et al. Autotransplantation of human carotid body cell aggregates for treatment of Parkinson’s disease. Neurosurgery. 2003;53(2):321–8. https://doi.org/10.1227/01.neu.0000073315.88827.72(discussion 8–30).

    Article  PubMed  Google Scholar 

  58. Schumacher JM, Ellias SA, Palmer EP, Kott HS, Dinsmore J, Dempsey PK, et al. Transplantation of embryonic porcine mesencephalic tissue in patients with PD. Neurology. 2000;54(5):1042–50. https://doi.org/10.1212/wnl.54.5.1042.

    Article  CAS  PubMed  Google Scholar 

  59. Fink JS, Schumacher JM, Ellias SL, Palmer EP, Saint-Hilaire M, Shannon K, et al. Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: preliminary results. Cell Transplant. 2000;9(2):273–8. https://doi.org/10.1177/096368970000900212.

    Article  CAS  PubMed  Google Scholar 

  60. Deacon T, Schumacher J, Dinsmore J, Thomas C, Palmer P, Kott S, et al. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nat Med. 1997;3(3):350–3. https://doi.org/10.1038/nm0397-350.

    Article  CAS  PubMed  Google Scholar 

  61. Bakay RA, Raiser CD, Stover NP, Subramanian T, Cornfeldt ML, Schweikert AW, et al. Implantation of spheramine in advanced Parkinson’s disease (PD). Front Biosci. 2004;9:592–602. https://doi.org/10.2741/1217.

    Article  CAS  PubMed  Google Scholar 

  62. Stover NP, Bakay RA, Subramanian T, Raiser CD, Cornfeldt ML, Schweikert AW, et al. Intrastriatal implantation of human retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease. Arch Neurol. 2005;62(12):1833–7. https://doi.org/10.1001/archneur.62.12.1833.

    Article  PubMed  Google Scholar 

  63. Stover NP, Watts RL. Spheramine for treatment of Parkinson’s disease. Neurotherapeutics. 2008;5(2):252–9. https://doi.org/10.1016/j.nurt.2008.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gross RE, Watts RL, Hauser RA, Bakay RA, Reichmann H, von Kummer R, et al. Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2011;10(6):509–19. https://doi.org/10.1016/S1474-4422(11)70097-7.

    Article  PubMed  Google Scholar 

  65. Farag ES, Vinters HV, Bronstein J. Pathologic findings in retinal pigment epithelial cell implantation for Parkinson disease. Neurology. 2009;73(14):1095–102. https://doi.org/10.1212/WNL.0b013e3181bbff1c.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gonzalez R, Garitaonandia I, Semechkin A, Kern R. Derivation of neural stem cells from human parthenogenetic stem cells. Methods Mol Biol. 2019;1919:43–57. https://doi.org/10.1007/978-1-4939-9007-8_4.

    Article  CAS  PubMed  Google Scholar 

  67. Gonzalez R, Garitaonandia I, Poustovoitov M, Abramihina T, McEntire C, Culp B, et al. Neural stem cells derived from human parthenogenetic stem cells engraft and promote recovery in a nonhuman primate model of Parkinson’s disease. Cell Transplant. 2016;25(11):1945–66. https://doi.org/10.3727/096368916X691682.

    Article  PubMed  Google Scholar 

  68. Gonzalez R, Garitaonandia I, Crain A, Poustovoitov M, Abramihina T, Noskov A, et al. Proof of concept studies exploring the safety and functional activity of human parthenogenetic-derived neural stem cells for the treatment of Parkinson’s disease. Cell Transplant. 2015;24(4):681–90. https://doi.org/10.3727/096368915X687769.

    Article  PubMed  Google Scholar 

  69. Gonzalez R, Garitaonandia I, Abramihina T, Wambua GK, Ostrowska A, Brock M, et al. Deriving dopaminergic neurons for clinical use: a practical approach. Sci Rep. 2013;3:1463. https://doi.org/10.1038/srep01463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garitaonandia I, Gonzalez R, Sherman G, Semechkin A, Evans A, Kern R. Novel approach to stem cell therapy in Parkinson’s disease. Stem Cells Dev. 2018;27(14):951–7. https://doi.org/10.1089/scd.2018.0001.

    Article  PubMed  Google Scholar 

  71. Kern R, Garitaonandia I, Gonzalez R, Sherman G, Semechkin A, Braine E, Nair G, Evans A. Results of an open label, dose escalating, phase 1 clinical trial evaluating the safety of a human neural stem cell based therapy in Parkinson’s disease. Neurology. 2019;92(15 Suppl.):P1.8-016.

    Google Scholar 

  72. Barker RA, Parmar M, Kirkeby A, Bjorklund A, Thompson L, Brundin P. Are stem cell-based therapies for Parkinson’s disease ready for the clinic in 2016? J Parkinsons Dis. 2016;6(1):57–63. https://doi.org/10.3233/JPD-160798.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang YK, Zhu WW, Wu MH, Wu YH, Liu ZX, Liang LM, et al. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease. Stem Cell Rep. 2018;11(1):171–82. https://doi.org/10.1016/j.stemcr.2018.05.010.

    Article  CAS  Google Scholar 

  74. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  CAS  Google Scholar 

  75. Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol. 2016;17(3):183–93. https://doi.org/10.1038/nrm.2016.8.

    Article  CAS  PubMed  Google Scholar 

  76. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80. https://doi.org/10.1038/nbt.1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takahashi J. Strategies for bringing stem cell-derived dopamine neurons to the clinic: the Kyoto trial. Prog Brain Res. 2017;230:213–26. https://doi.org/10.1016/bs.pbr.2016.11.004.

    Article  PubMed  Google Scholar 

  78. Song B, Cha Y, Ko S, Jeon J, Lee N, Seo H, et al. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson’s disease models. J Clin Invest. 2020;130(2):904–20. https://doi.org/10.1172/JCI130767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci. 2020. https://doi.org/10.1038/s41583-019-0257-7.

    Article  PubMed  Google Scholar 

  80. Loring JF. Autologous induced pluripotent stem cell-derived neurons to treat Parkinson’s disease. Stem Cells Dev. 2018;27(14):958–9. https://doi.org/10.1089/scd.2018.0107.

    Article  CAS  PubMed  Google Scholar 

  81. ‘Reprogrammed’ stem cells implanted into patient with Parkinson’s disease. Nature. 2018. https://www.nature.com/articles/d41586-018-07407-9. Accessed 4 Apr 2020.

  82. Studer L. Strategies for bringing stem cell-derived dopamine neurons to the clinic: the NYSTEM trial. Prog Brain Res. 2017;230:191–212. https://doi.org/10.1016/bs.pbr.2017.02.008.

    Article  PubMed  Google Scholar 

  83. Kirkeby A, Parmar M, Barker RA. Strategies for bringing stem cell-derived dopamine neurons to the clinic: a European approach (STEM-PD). Prog Brain Res. 2017;230:165–90. https://doi.org/10.1016/bs.pbr.2016.11.011.

    Article  PubMed  Google Scholar 

  84. Koprich JB, Kalia LV, Brotchie JM. Animal models of alpha-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci. 2017;18(9):515–29. https://doi.org/10.1038/nrn.2017.75.

    Article  CAS  PubMed  Google Scholar 

  85. Langston JW, Widner H, Goetz CG, Brooks D, Fahn S, Freeman T, et al. Core assessment program for intracerebral transplantations (CAPIT). Mov Disord. 1992;7(1):2–13. https://doi.org/10.1002/mds.870070103.

    Article  CAS  PubMed  Google Scholar 

  86. Defer GL, Widner H, Marie RM, Remy P, Levivier M. Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov Disord. 1999;14(4):572–84. https://doi.org/10.1002/1531-8257(199907)14:4%3c572:aid-mds1005%3e3.0.co;2-c.

    Article  CAS  PubMed  Google Scholar 

  87. Pahwa R, Isaacson SH, Torres-Russotto D, Nahab FB, Lynch PM, Kotschet KE. Role of the Personal KinetiGraph in the routine clinical assessment of Parkinson’s disease: recommendations from an expert panel. Expert Rev Neurother. 2018;18(8):669–80. https://doi.org/10.1080/14737175.2018.1503948.

    Article  CAS  PubMed  Google Scholar 

  88. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610–22. https://doi.org/10.1056/NEJMoa1205158.

    Article  CAS  PubMed  Google Scholar 

  89. Mestre TA, Espay AJ, Marras C, Eckman MH, Pollak P, Lang AE. Subthalamic nucleus-deep brain stimulation for early motor complications in Parkinson’s disease: the EARLYSTIM trial: early is not always better. Mov Disord. 2014;29(14):1751–6. https://doi.org/10.1002/mds.26024.

    Article  PubMed  Google Scholar 

  90. Brundin P, Kordower JH. Neuropathology in transplants in Parkinson’s disease: implications for disease pathogenesis and the future of cell therapy. Prog Brain Res. 2012;200:221–41. https://doi.org/10.1016/B978-0-444-59575-1.00010-7.

    Article  PubMed  Google Scholar 

  91. Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol. 2017;298(Pt B):225–35. https://doi.org/10.1016/j.expneurol.2017.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sardi SP, Simuni T. New Era in disease modification in Parkinson’s disease: review of genetically targeted therapeutics. Parkinsonism Relat Disord. 2019;59:32–8. https://doi.org/10.1016/j.parkreldis.2018.10.025.

    Article  PubMed  Google Scholar 

  93. Timbie KF, Mead BP, Price RJ. Drug and gene delivery across the blood-brain barrier with focused ultrasound. J Control Release. 2015;219:61–75. https://doi.org/10.1016/j.jconrel.2015.08.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bachoud-Levi AC. From open to large-scale randomized cell transplantation trials in Huntington’s disease: lessons from the multicentric intracerebral grafting in Huntington’s disease trial (MIG-HD) and previous pilot studies. Prog Brain Res. 2017;230:227–61. https://doi.org/10.1016/bs.pbr.2016.12.011.

    Article  PubMed  Google Scholar 

  95. Precious SV, Zietlow R, Dunnett SB, Kelly CM, Rosser AE. Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington’s disease? Neurochem Int. 2017;106:114–21. https://doi.org/10.1016/j.neuint.2017.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maxan A, Mason S, Saint-Pierre M, Smith E, Ho A, Harrower T, et al. Outcome of cell suspension allografts in a patient with Huntington’s disease. Ann Neurol. 2018;84(6):950–6. https://doi.org/10.1002/ana.25354.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Glass JD, Hertzberg VS, Boulis NM, Riley J, Federici T, Polak M, et al. Transplantation of spinal cord-derived neural stem cells for ALS: analysis of phase 1 and 2 trials. Neurology. 2016;87(4):392–400. https://doi.org/10.1212/WNL.0000000000002889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Baloh RH, Glass JD, Svendsen CN. Stem cell transplantation for amyotrophic lateral sclerosis. Curr Opin Neurol. 2018;31(5):655–61. https://doi.org/10.1097/WCO.0000000000000598.

    Article  CAS  PubMed  Google Scholar 

  99. Barker RA, Mason SL, Harrower TP, Swain RA, Ho AK, Sahakian BJ, et al. The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington’s disease. J Neurol Neurosurg Psychiatry. 2013;84(6):657–65. https://doi.org/10.1136/jnnp-2012-302441.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hauser RA, Furtado S, Cimino CR, Delgado H, Eichler S, Schwartz S, et al. Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology. 2002;58(5):687–95. https://doi.org/10.1212/wnl.58.5.687.

    Article  CAS  PubMed  Google Scholar 

  101. Cicchetti F, Lacroix S, Cisbani G, Vallieres N, Saint-Pierre M, St-Amour I, et al. Mutant hunting tin is present in neuronal grafts in Huntington disease patients. Ann Neurol. 2014;76(1):31–42. https://doi.org/10.1002/ana.24174.

    Article  CAS  PubMed  Google Scholar 

  102. Lindvall O, Sawle G, Widner H, Rothwell JC, Bjorklund A, Brooks D, et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol. 1994;35(2):172–80. https://doi.org/10.1002/ana.410350208.

    Article  CAS  PubMed  Google Scholar 

  103. Sawle GV, Bloomfield PM, Bjorklund A, Brooks DJ, Brundin P, Leenders KL, et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: PET [18F]6-L-fluorodopa studies in two patients with putaminal implants. Ann Neurol. 1992;31(2):166–73. https://doi.org/10.1002/ana.410310207.

    Article  CAS  PubMed  Google Scholar 

  104. Defer GL, Geny C, Ricolfi F, Fenelon G, Monfort JC, Remy P, et al. Long-term outcome of unilaterally transplanted parkinsonian patients. I. Clinical approach. Brain. 1996;119(Pt 1):41–50. https://doi.org/10.1093/brain/119.1.41.

    Article  PubMed  Google Scholar 

  105. Freeman TB, Olanow CW, Hauser RA, Nauert GM, Smith DA, Borlongan CV, et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol. 1995;38(3):379–88. https://doi.org/10.1002/ana.410380307.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Claire Henchcliffe acknowledges funding from the C.V. Starr Foundation and New York State Stem Cell Science (NYSTEM). Harini Sarva acknowledges funding from the Daisy and Paul Soros Clinical Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Henchcliffe.

Ethics declarations

Funding

No funding was received by either author for the preparation of this manuscript.

Conflicts of interest

Dr Henchcliffe has received honoraria for consulting for the California Institute of Regenerative Medicine (CIRM) Grant Working Group and research funding as an investigator in a research consortium from New York State Stem Cell Science (NYSTEM). Unrelated to this manuscript she has the following disclosures: honorarium for lecture from the Houston Methodist Neurological Institute; honoraria for ad hoc advisory board participation from US WorldMeds, Adamas Pharmaceuticals, Mitsubishi Tanabe Pharma Inc., and Prevail Therapeutics; and funding from the Michael J. Fox Foundation, National Institute of Health, Insightec, and Prevail Therapeutics. Dr H Sarva has received funding from the Michael J Fox Foundation, and clinical trial support from Biogen, Insightec and Lundbeck Pharmaceuticals. She has received honoraria for participation in advisory boards for Merz and Amneal pharmaceuticals, and for serving as an independent video rater for Neurocrine Neurosciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henchcliffe, C., Sarva, H. Restoring Function to Dopaminergic Neurons: Progress in the Development of Cell-Based Therapies for Parkinson’s Disease. CNS Drugs 34, 559–577 (2020). https://doi.org/10.1007/s40263-020-00727-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-020-00727-3

Navigation