Skip to main content
Log in

Gene Therapy for Fabry Disease: A Review of the Literature

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of the lysosomal enzyme, α-galactosidase A. The lack of adequate enzymatic activity results in a systemic accumulation of neutral glycosphingolipids, predominantly globotriaosylceramide, in the lysosomes of, especially, endothelial and smooth muscle cells of blood vessels. Enzyme replacement therapy is at present the only available specific treatment for Fabry disease; however, this therapy has important drawbacks. Gene-mediated enzyme replacement is a reasonable and highly promising approach for the treatment of Fabry disease. It corresponds to a single gene disorder in which moderately low levels of enzyme activity should be sufficient for clinical efficacy and, thanks to cross-correction mechanisms, the transfection of a small number of cells will potentially correct distant cells too. This article summarizes the studies that have been carried out concerning gene therapy for the treatment of Fabry disease. We briefly review the literature from earlier studies in the 1990s to the current achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brady RO, Gal AE, Bradley RM, et al. Enzymatic defect in Fabry’s disease. N Engl J Med. 1967;276(21):1163–7.

    Article  PubMed  CAS  Google Scholar 

  2. Sweeley CC, Klionsky B. Fabry’s disease: classification as a sphingolipidosis and partial characterization of a novel glycolipid. J Biol Chem. 1963;238:3148–50.

    PubMed  CAS  Google Scholar 

  3. Altarescu G, Moore DF, Pursley R, et al. Enhanced endothelium-dependent vasodilation in Fabry disease. Stroke. 2001;32(7):1559–62.

    Article  PubMed  CAS  Google Scholar 

  4. Desnick RJ, Ioannou YA, Eng CM. Alpha-galactosidase A deficiency: Fabry disease. In: Scriver CR, Beudet AL, Sly WS, Valle D, editors. The metabolic and molecular basis of inherited disease. 8th ed. NewYork: McGraw-Hill; 2001. p. 3733–74.

    Google Scholar 

  5. Spada M, Pagliardini S, Yasuda M, et al. High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet. 2006;79(1):31–40.

    Article  PubMed  CAS  Google Scholar 

  6. Lin HY, Chong KW, Hsu JH, et al. High incidence of the cardiac variant of Fabry disease revealed by newborn screening in the Taiwan Chinese population. Circ Cardiovasc Genet. 2009;2(5):450–6.

    Article  PubMed  Google Scholar 

  7. Hwu WL, Chien YH, Lee NC, et al. Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936+919G>A (IVS4+919G>A). Hum Mutat. 2009;30(10):1397–405.

    Article  PubMed  CAS  Google Scholar 

  8. MacDermot KD, Holmes A, Miners AH. Anderson-Fabry disease: clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J Med Genet. 2001;38(11):750–60.

    Article  PubMed  CAS  Google Scholar 

  9. Ramaswami U. Update on role of agalsidase alfa in management of Fabry disease. Drug Des Devel Ther. 2011;5:155–73.

    Article  PubMed  CAS  Google Scholar 

  10. Wang RY, Lelis A, Mirocha J, et al. Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genet Med. 2007;9(1):34–45.

    Article  PubMed  CAS  Google Scholar 

  11. Wilcox WR, Oliveira JP, Hopkin RJ, et al. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab. 2008;93(2):112–28.

    Article  PubMed  CAS  Google Scholar 

  12. Hoffmann B, Garcia de Lorenzo A, Mehta A, et al. Effects of enzyme replacement therapy on pain and health related quality of life in patients with Fabry disease: data from FOS (Fabry Outcome Survey). J Med Genet. 2005;42(3):247–52.

    Google Scholar 

  13. Schiffmann R, Martin RA, Reimschisel T, et al. Four-year prospective clinical trial of agalsidase alfa in children with Fabry disease. J Pediatr. 2010;156(5):832–7, 837.e1.

    Google Scholar 

  14. Ramaswami U, Parini R, Pintos-Morell G, et al. Fabry disease in children and response to enzyme replacement therapy: results from the Fabry Outcome Survey. Clin Genet. 2012;81(5):485–90.

    Article  PubMed  CAS  Google Scholar 

  15. Weidemann F, Niemann M, Breunig F, et al. Long-term effects of enzyme replacement therapy on Fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation. 2009;119(4):524–9.

    Article  PubMed  CAS  Google Scholar 

  16. Warnock DG, Ortiz A, Mauer M, et al. Renal outcomes of agalsidase beta treatment for Fabry disease: role of proteinuria and timing of treatment initiation. Nephrol Dial Transplant. 2012;27(3):1042–9.

    Article  PubMed  CAS  Google Scholar 

  17. Wilcox WR, Linthorst GE, Germain DP, et al. Anti-alpha-galactosidase A antibody response to agalsidase beta treatment: data from the Fabry Registry. Mol Genet Metab. 2012;105(3):443–9.

    Article  PubMed  CAS  Google Scholar 

  18. Vedder AC, Linthorst GE, Houge G, et al. Treatment of Fabry disease: outcome of a comparative trial with agalsidase alfa or beta at a dose of 0.2 mg/kg. PLoS One. 2007;2(7):e598.

    Article  PubMed  Google Scholar 

  19. Fan JQ, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med. 1999;5(1):112–5.

    Article  PubMed  CAS  Google Scholar 

  20. Hamanaka R, Shinohara T, Yano S, et al. Rescue of mutant alpha-galactosidase A in the endoplasmic reticulum by 1-deoxygalactonojirimycin leads to trafficking to lysosomes. Biochim Biophys Acta. 2008;1782(6):408–13.

    Article  PubMed  CAS  Google Scholar 

  21. Shiozuka C, Taguchi A, Matsuda J, et al. Increased globotriaosylceramide levels in a transgenic mouse expressing human alpha1,4-galactosyltransferase and a mouse model for treating Fabry disease. J Biochem. 2011;149(2):161–70.

    Article  PubMed  CAS  Google Scholar 

  22. Ishii S. Pharmacological chaperone therapy for Fabry disease. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(1):18–30.

    Article  PubMed  CAS  Google Scholar 

  23. Sands MS, Davidson BL. Gene therapy for lysosomal storage diseases. Mol Ther. 2006;13(5):839–49.

    Article  PubMed  CAS  Google Scholar 

  24. Sugimoto Y, Aksentijevich I, Murray GJ, et al. Retroviral coexpression of a multidrug resistance gene (MDR1) and human alpha-galactosidase A for gene therapy of Fabry disease. Hum Gene Ther. 1995;6(7):905–15.

    Article  PubMed  CAS  Google Scholar 

  25. Medin JA, Tudor M, Simovitch R, et al. Correction in trans for Fabry disease: expression, secretion and uptake of alpha-galactosidase A in patient-derived cells driven by a high-titer recombinant retroviral vector. Proc Natl Acad Sci USA. 1996;93(15):7917–22.

    Article  PubMed  CAS  Google Scholar 

  26. Ohshima T, Murray GJ, Swaim WD, et al. Alpha-Galactosidase A deficient mice: a model of Fabry disease. Proc Natl Acad Sci USA. 1997;94(6):2540–4.

    Article  PubMed  CAS  Google Scholar 

  27. Takenaka T, Hendrickson CS, Tworek DM, et al. Enzymatic and functional correction along with long-term enzyme secretion from transduced bone marrow hematopoietic stem/progenitor and stromal cells derived from patients with Fabry disease. Exp Hematol. 1999;27(7):1149–59.

    Article  PubMed  CAS  Google Scholar 

  28. Takiyama N, Dunigan JT, Vallor MJ, et al. Retrovirus-mediated transfer of human alpha-galactosidase A gene to human CD34+ hematopoietic progenitor cells. Hum Gene Ther. 1999;10(18):2881–9.

    Article  PubMed  CAS  Google Scholar 

  29. Takenaka T, Qin G, Brady RO, et al. Circulating alpha-galactosidase A derived from transduced bone marrow cells: relevance for corrective gene transfer for Fabry disease. Hum Gene Ther. 1999;10(12):1931–9.

    Article  PubMed  CAS  Google Scholar 

  30. Takenaka T, Murray GJ, Qin G, et al. Long-term enzyme correction and lipid reduction in multiple organs of primary and secondary transplanted Fabry mice receiving transduced bone marrow cells. Proc Natl Acad Sci USA. 2000;97(13):7515–20.

    Article  PubMed  CAS  Google Scholar 

  31. Qin G, Takenaka T, Telsch K, et al. Preselective gene therapy for Fabry disease. Proc Natl Acad Sci USA. 2001;98(6):3428–33.

    Article  PubMed  CAS  Google Scholar 

  32. Gene Therapy Clinical Trials Worldwide. Provided by the Journal of Gene Medicine. Jon Wiley and Sons Ltd, Oxford. 2012. http://www.wiley.co.k/genmed/clinical. Accessed 02 Nov 2012.

  33. D’Costa J, Harvey-White J, Qasba P, et al. HIV-2 derived lentiviral vectors: gene transfer in Parkinson’s and Fabry disease models in vitro. J Med Virol. 2003;71(2):173–82.

    Article  PubMed  Google Scholar 

  34. Yoshimitsu M, Sato T, Tao K, et al. Bioluminescent imaging of a marking transgene and correction of Fabry mice by neonatal injection of recombinant lentiviral vectors. Proc Natl Acad Sci USA. 2004;101(48):16909–14.

    Article  PubMed  CAS  Google Scholar 

  35. Yoshimitsu M, Higuchi K, Ramsubir S, et al. Efficient correction of Fabry mice and patient cells mediated by lentiviral transduction of hematopoietic stem/progenitor cells. Gene Ther. 2007;14(3):256–65.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshimitsu M, Higuchi K, Dawood F, et al. Correction of cardiac abnormalities in Fabry mice by direct intraventricular injection of a recombinant lentiviral vector that engineers expression of alpha-galactosidase A. Circ J. 2006;70(11):1503–8.

    Article  PubMed  CAS  Google Scholar 

  37. Lee CJ, Fan X, Guo X, et al. Promoter-specific lentivectors for long-term, cardiac-directed therapy of Fabry disease. J Cardiol. 2011;57(1):115–22.

    Article  PubMed  Google Scholar 

  38. Siatskas C, Medin JA. Gene therapy for Fabry disease. J Inherit Metab Dis. 2001;24(Suppl. 2):25–41; discussion 11-2.

    Google Scholar 

  39. Yang Y, Jooss KU, Su Q, et al. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther. 1996;3(2):137–44.

    PubMed  Google Scholar 

  40. Ziegler RJ, Yew NS, Li C, et al. Correction of enzymatic and lysosomal storage defects in Fabry mice by adenovirus-mediated gene transfer. Hum Gene Ther. 1999;10(10):1667–82.

    Article  PubMed  CAS  Google Scholar 

  41. Ziegler RJ, Li C, Cherry M, et al. Correction of the nonlinear dose response improves the viability of adenoviral vectors for gene therapy of Fabry disease. Hum Gene Ther. 2002;13(8):935–45.

    Article  PubMed  CAS  Google Scholar 

  42. Li C, Ziegler RJ, Cherry M, et al. Adenovirus-transduced lung as a portal for delivering alpha-galactosidase A into systemic circulation for Fabry disease. Mol Ther. 2002;5(6):745–54.

    Article  PubMed  CAS  Google Scholar 

  43. Passineau MJ, Fahrenholz T, Machen L, et al. alpha-Galactosidase A expressed in the salivary glands partially corrects organ biochemical deficits in the Fabry mouse through endocrine trafficking. Hum Gene Ther. 2011;22(3):293–301.

    Article  PubMed  CAS  Google Scholar 

  44. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–93.

    Article  PubMed  CAS  Google Scholar 

  45. Goncalves MA. Adeno-associated virus: from defective virus to effective vector. Virol J. 2005;2:43.

    Article  PubMed  Google Scholar 

  46. Nakai H, Storm TA, Kay MA. Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J Virol. 2000;74(20):9451–63.

    Article  PubMed  CAS  Google Scholar 

  47. Jung SC, Han IP, Limaye A, et al. Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc Natl Acad Sci USA. 2001;98(5):2676–81.

    Article  PubMed  CAS  Google Scholar 

  48. Takahashi H, Hirai Y, Migita M, et al. Long-term systemic therapy of Fabry disease in a knockout mouse by adeno-associated virus-mediated muscle-directed gene transfer. Proc Natl Acad Sci USA. 2002;99(21):13777–82.

    Article  PubMed  CAS  Google Scholar 

  49. Park J, Murray GJ, Limaye A, et al. Long-term correction of globotriaosylceramide storage in Fabry mice by recombinant adeno-associated virus-mediated gene transfer. Proc Nat Acad Sci. 2003;100(6):3450–4.

    Article  PubMed  CAS  Google Scholar 

  50. Ziegler RJ, Lonning SM, Armentano D, et al. AAV2 vector harboring a liver-restricted promoter facilitates sustained expression of therapeutic levels of [alpha]-galactosidase A and the induction of immune tolerance in Fabry mice. Mol Ther. 2004;9(2):231–40.

    Article  PubMed  CAS  Google Scholar 

  51. Chirmule N, Propert K, Magosin S, et al. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999;6(9):1574–83.

    Article  PubMed  CAS  Google Scholar 

  52. Ziegler RJ, Cherry M, Barbon CM, et al. Correction of the biochemical and functional deficits in Fabry mice following AAV8-mediated hepatic expression of alpha-galactosidase A. Mol Ther. 2007;15(3):492–500.

    Article  PubMed  CAS  Google Scholar 

  53. Ogawa K, Hirai Y, Ishizaki M, et al. Long-term inhibition of glycosphingolipid accumulation in Fabry model mice by a single systemic injection of AAV1 vector in the neonatal period. Mol Genet Metab. 2009;96(3):91–6.

    Article  PubMed  CAS  Google Scholar 

  54. Sabatino DE, Mackenzie TC, Peranteau W, et al. Persistent expression of hF. IX After tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther. 2007;15(9):1677–85.

    Article  PubMed  CAS  Google Scholar 

  55. Choi JO, Lee MH, Park HY, et al. Characterization of Fabry mice treated with recombinant adeno-associated virus 2/8-mediated gene transfer. J Biomed Sci. 2010;17:26.

    Article  PubMed  Google Scholar 

  56. Gao G, Lu Y, Calcedo R, et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther. 2006;13(1):77–87.

    Article  PubMed  CAS  Google Scholar 

  57. Hurlbut GD, Ziegler RJ, Nietupski JB, et al. Preexisting immunity and low expression in primates highlight translational challenges for liver-directed AAV8-mediated gene therapy. Mol Ther. 2010;18(11):1983–94.

    Article  PubMed  CAS  Google Scholar 

  58. Nietupski JB, Hurlbut GD, Ziegler RJ, et al. Systemic administration of AAV-8-a-galactosidase A induces humoral tolerance in nonhuman primates despite low hepatic expression. Mol Ther. 2011;19(11):1999–2011.

    Article  PubMed  CAS  Google Scholar 

  59. Jafari M, Soltani M, Naahidi S, et al. Nonviral approach for targeted nucleic acid delivery. Curr Med Chem. 2012;19(2):197–208.

    Article  PubMed  CAS  Google Scholar 

  60. Novo FJ, Gorecki DC, Goldspink G, et al. Gene transfer and expression of human alpha-galactosidase from mouse muscle in vitro and in vivo. Gene Ther. 1997;4(5):488–92.

    Article  PubMed  CAS  Google Scholar 

  61. Estruch EJ, Hart SL, Kinnon C, et al. Non-viral, integrin-mediated gene transfer into fibroblasts from patients with lysosomal storage diseases. J Gene Med. 2001;3(5):488–97.

    Google Scholar 

  62. Przybylska M, Wu IH, Zhao H, et al. Partial correction of the alpha-galactosidase A deficiency and reduction of glycolipid storage in Fabry mice using synthetic vectors. J Gene Med. 2004;6(1):85–92.

    Article  PubMed  CAS  Google Scholar 

  63. Ioannou YA, Zeidner KM, Gordon RE, et al. Fabry disease: preclinical studies demonstrate the effectiveness of alpha-galactosidase A replacement in enzyme-deficient mice. Am J Hum Genet. 2001;68(1):14–25.

    Article  PubMed  CAS  Google Scholar 

  64. Lavigne MD, Pohlschmidt M, Novo JF, et al. Promoter dependence of plasmid-pluronics targeted alpha galactosidase A expression in skeletal muscle of Fabry mice. Mol Ther. 2005;12(5):985–90.

    Article  PubMed  CAS  Google Scholar 

  65. Lemieux P, Guerin N, Paradis G, et al. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle. Gene Ther. 2000;7(11):986–91.

    Article  PubMed  CAS  Google Scholar 

  66. Chu Q, Joseph M, Przybylska M, et al. Transient siRNA-mediated attenuation of liver expression from an alpha-galactosidase A plasmid reduces subsequent humoral immune responses to the transgene product in mice. Mol Ther. 2005;12(2):264–73.

    Article  PubMed  CAS  Google Scholar 

  67. Lavigne MD, Yates L, Coxhead P, et al. Nuclear-targeted chimeric vector enhancing nonviral gene transfer into skeletal muscle of Fabry mice in vivo. FASEB J. 2008;22(6):2097–107.

    Article  PubMed  CAS  Google Scholar 

  68. Nakamura G, Maruyama H, Ishii S, et al. Naked plasmid DNA-based alpha-galactosidase A gene transfer partially reduces systemic accumulation of globotriaosylceramide in Fabry mice. Mol Biotechnol. 2008;38(2):109–19.

    Article  PubMed  CAS  Google Scholar 

  69. Ruiz de Garibay AP, Delgado D, Del Pozo-Rodriguez A, et al. Multicomponent nanoparticles as nonviral vectors for the treatment of Fabry disease by gene therapy. Drug Des Devel Ther. 2012;6:303–10.

  70. del Pozo-Rodriguez A, Delgado D, Solinis MA, et al. Solid lipid nanoparticles as potential tools for gene therapy: in vivo protein expression after intravenous administration. Int J Pharm. 2010;385(1–2):157–62.

    Article  PubMed  Google Scholar 

  71. Delgado D, Gascón AR, del Pozo-Rodríguez A, et al. Dextran–protamine–solid lipid nanoparticles as a non-viral vector for gene therapy: in vitro characterization and in vivo transfection after intravenous administration to mice. Int J Pharm. 2012;425(1–2):35–43.

    Article  PubMed  CAS  Google Scholar 

  72. Shen JS, Meng XL, Schiffmann R, et al. Establishment and characterization of Fabry disease endothelial cells with an extended lifespan. Mol Genet Metab. 2007;92(1–2):137–44.

    Google Scholar 

  73. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288(5466):669–72.

    Google Scholar 

  74. Gaspar HB, Parsley KL, Howe S, et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet. 2004;364(9452):2181–7.

    Article  PubMed  CAS  Google Scholar 

  75. Hacein-Bey-Abina S, Hauer J, Lim A, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2010;363(4):355–64.

    Article  PubMed  CAS  Google Scholar 

  76. Sakuma T, Barry MA, Ikeda Y. Lentiviral vectors: basic to translational. Biochem J. 2012;443(3):603–18.

    Article  PubMed  CAS  Google Scholar 

  77. Liang SB, Yoshimitsu M, Poeppl A, et al. Multiple reduced-intensity conditioning regimens facilitate correction of Fabry mice after transplantation of transduced cells. Mol Ther. 2007;15(3):618–27.

    Article  PubMed  CAS  Google Scholar 

  78. Scaife M, Pacienza N, Au BC, et al. Engineered human Tmpk fused with truncated cell-surface markers: versatile cell-fate control safety cassettes. Gene Ther. 2013;20(1):24–34.

    Article  PubMed  CAS  Google Scholar 

  79. Kotin RM, Linden RM, Berns KI. Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J. 1992;11(13):5071–8.

    PubMed  CAS  Google Scholar 

  80. Flotte TR, Afione SA, Zeitlin PL. Adeno-asociated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am J Respir Cell Mol Biol. 1994;11(5):517–21.

    Article  PubMed  CAS  Google Scholar 

  81. Grieger JC, Samulski RJ. Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol. 2012;507:229–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basque Government’s Department of Education, Universities and Investigation (IT-341-10). We would also like to thank the Basque Government for the research grant awarded to A.P. Ruiz de Garibay. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Rodríguez-Gascón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz de Garibay, A.P., Solinís, M.Á. & Rodríguez-Gascón, A. Gene Therapy for Fabry Disease: A Review of the Literature. BioDrugs 27, 237–246 (2013). https://doi.org/10.1007/s40259-013-0032-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-013-0032-7

Keywords

Navigation