Skip to main content

Advertisement

Log in

Barriers to Reverse Logistics in the Computer Supply Chain Using Interpretive Structural Model

  • Original Research
  • Published:
Global Journal of Flexible Systems Management Aims and scope Submit manuscript

Abstract

Researchers and practitioners are paying attention to reverse logistics (RL) issues due to growing environmental concerns, competitive advantage, promising financial potential, legislative reasons and social responsibility. This study aims to examine the contextual relationship and interactions among barriers to implement RL practices in the computer supply chain of Bangladesh. We applied Interpretive Structural Modeling (ISM) technique to diagnose significant barriers and proposed a hierarchical framework for investigating the relationships among them. We also used MICMAC (Matriced’ Impacts Croisés Multiplication Appliquée á unClassement) analysis to classify the barriers based on the driving power and dependence among them. Seven barriers were finalized in the Bangladesh context based on the previous literature and professional feedback. The findings reveal that financial constraints along with the lack of interest from top management are the most influential barriers to RL for the computer supply chains of Bangladesh. The ISM-based analysis can provide managers with insights for developing strategies for implementing RL practices in the computer supply chain of Bangladesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdulrahman, M. D., Gunasekaran, A., & Subramanian, N. (2014). Critical barriers in implementing reverse logistics in the Chinese manufacturing sectors. International Journal of Production Economics, 147, 460–471. https://doi.org/10.1016/j.ijpe.2012.08.003.

    Article  Google Scholar 

  • Agrawal, S., Singh, R. K., & Murtaza, Q. (2015). A literature review and perspectives in reverse logistics. Resources, Conservation and Recycling, 97, 76–92. https://doi.org/10.1016/j.resconrec.2015.02.009.

    Article  Google Scholar 

  • Ali, S. M., & Nakade, K. (2017). Optimal ordering policies in a multi-sourcing supply chain with supply and demand disruptions-a CVaR approach. International Journal of Logistics Systems and Management, 28(2), 180–199.

    Article  Google Scholar 

  • Ali, S. M., Rahman, M. H., Tumpa, T. J., Rifat, A. A. M., & Paul, S. K. (2018). Examining price and service competition among retailers in a supply chain under potential demand disruption. Journal of Retailing and Consumer Services, 40, 40–47.

    Article  Google Scholar 

  • Attri, R., Dev, N., & Sharma, V. (2013a). Interpretive structural modelling (ISM) approach: An overview. Research Journal of Management Sciences, 2(2), 3–8.

    Google Scholar 

  • Attri, R., Grover, S., Dev, N., & Kumar, D. (2013b). An ISM approach for modelling the enablers in the implementation of total productive maintenance (TPM). International Journal of Systems Assurance Engineering and Management, 4(4), 313–326. https://doi.org/10.1007/s13198-012-0088-7.

    Article  Google Scholar 

  • Bernon, M., Rossi, S., & Cullen, J. (2010). Retail reverse logistics: A call and grounding framework for research. International Journal of Physical Distribution & Logistics Management, 41(5), 484–510. https://doi.org/10.1108/09600031111138835.

    Article  Google Scholar 

  • Bing, X., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. (2014). Sustainable reverse logistics network design for household plastic waste. Flexible Services and Manufacturing Journal, 26(1–2), 119–142. https://doi.org/10.1007/s10696-012-9149-0.

    Article  Google Scholar 

  • Bouzon, M., Govindan, K., & Rodriguez, C. M. T. (2016a). Evaluating barriers for reverse logistics implementation under a multiple stakeholders’ perspective analysis using grey decision making approach. Resources, Conservation and Recycling. https://doi.org/10.1016/j.resconrec.2016.11.022.

    Google Scholar 

  • Bouzon, M., Govindan, K., Taboada, C. M., & Campos, L. M. S. (2016b). Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP. Resources, Conservation and Recycling. https://doi.org/10.1016/j.resconrec.2015.05.021.

    Google Scholar 

  • Çetin, A., Altekin, F. T., & Güvenç, S. (2014). Hybrid simulation-analytical modeling approaches for the reverse logistics network design of a third-party logistics provider. Computers & Industrial Engineering, 70, 74–89. https://doi.org/10.1016/j.cie.2014.01.004.

    Article  Google Scholar 

  • Charan, P., Shankar, R., & Baisya, R. K. (2008). Analysis of interactions among the variables of supply chain performance measurement system implementation. Business Process Management Journal, 14, 512–529. https://doi.org/10.1108/14637150810888055.

    Article  Google Scholar 

  • Debata, B. R., Sree, K., Patnaik, B., & Mahapatra, S. S. (2013). Evaluating medical tourism enablers with interpretive structural modeling. Benchmarking, 20(6), 716–743. https://doi.org/10.1108/BIJ-10-2011-0079.

    Article  Google Scholar 

  • Dekker, R., Fleischmann, M., Inderfurth, K., & Van Wassenhove, L. N. (2004). Reverse logistics: Quantitative models for closed-loop supply chains. Interfaces. https://doi.org/10.1007/978-3-540-24803-3_5.

    Google Scholar 

  • Dhanda, K. K., & Peters, A. A. (2005). Reverse logistics in the computer industry. International Journal of Computers Systems and Signals, 6(2), 57–67.

    Google Scholar 

  • Dubey, R., Gunasekaran, A., Sushil, & Singh, T. (2015). Building theory of sustainable manufacturing using total interpretive structural modelling. International Journal of Systems Science: Operations & Logistics, 2(4), 231–247.

    Google Scholar 

  • Ertas, A., Smith, M. W., Tate, D., Lawson, W. D., & Baturalp, T. B. (2016). Complexity of system maintainability analysis based on the interpretive structural modeling methodology: Transdisciplinary approach. Journal of Systems Science and Systems Engineering, 25(2), 254–268.

    Article  Google Scholar 

  • Flapper, S. D. P., Gayon, J. P., & Vercraene, S. (2012). Control of a production-inventory system with returns under imperfect advance return information. European Journal of Operational Research, 218(2), 392–400. https://doi.org/10.1016/j.ejor.2011.10.051.

    Article  Google Scholar 

  • Fleischmann, M., Krikke, H. R., Dekker, R., & Flapper, S. D. P. (2000). A characterisation of logistics networks for product recovery. Omega, 28(6), 653–666. https://doi.org/10.1016/S0305-0483(00)00022-0.

    Article  Google Scholar 

  • Fleischmann, M., van Nunen, J., Gräve, B., & Gapp, R. (2005). Reverse logistics—capturing value in the extended supply chain. In Supply chain management on demand: Strategies, technologies, applications (pp. 167–86).

  • Garg, D., Luthra, S., & Haleem, A. (2016). An evaluation of barriers to implement reverse logistics: A case study of Indian fastener industry. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 10(8), 1484–1489.

    Google Scholar 

  • Ginter, P. M., & Starling, J. M. (1978). Reverse distribution channels for recycling. California Management Review, 20(3), 72–82. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=6412891&site=ehost-live&scope=site.

  • Giridhar, A. K. D. G. (2015). Interpretive structural modeling approach for development of electric vehicle market in India. Procedia CIRP, 26, 40–45. https://doi.org/10.1016/j.procir.2014.07.125.

    Article  Google Scholar 

  • Govindan, K., Kannan, D., Mathiyazhagan, K., Jabbour, A. B. L. D. S., & Jabbour, C. J. C. (2013). Analysing green supply chain management practices in Brazil’s electrical/electronics industry using interpretive structural modelling. International Journal of Environmental Studies, 70(4), 477–493. https://doi.org/10.1080/00207233.2013.798494.

    Article  Google Scholar 

  • Govindan, K., Palaniappan, M., Zhu, Q., & Kannan, D. (2012). Production economics analysis of third party reverse logistics provider using interpretive structural modeling. International Journal of Production Economics, 140(1), 204–211. https://doi.org/10.1016/j.ijpe.2012.01.043.

    Article  Google Scholar 

  • Grenchus, E., & Johnson, S. (2001). Improving environmental performance through reverse logistics at IBM, IEEE International Symposium on Electronics and the Environment, 236–240.http://www.scopus.com/inward/record.url?eid=2-s2.0-0034827687&partnerID=40.

  • Guiltinan, J. P., & Nwokoye, N. G. (1975). Developing distribution channels and systems in the emerging recycling industries. International Journal of Physical Distribution & Logistics Management, 6(1), 28–38. https://doi.org/10.1108/eb014359.

    Article  Google Scholar 

  • Hatefi, S. M., & Jolai, F. (2014). Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions. Applied Mathematical Modelling, 38(9), 2630–2647.

    Article  Google Scholar 

  • Hatefi, S. M., & Jolai, F. (2015). Reliable forward-reverse logistics network design under partial and complete facility disruptions. International Journal of Logistics Systems and Management, 20(3), 370–394.

    Article  Google Scholar 

  • Hossain S., Sultan S., Shahnaz F., Akram A. B., Nesa M., & Happell, J. (2010). Study on E-waste: Bangladesh Situation. (2010), Environment and Social Development Organization-ESDO, 1–36. https://www.env.go.jp/recycle/circul/venous_industry/pdf/env/h27/02_4.pdf.

  • Hsu, C. C., Tan, K. C., & Zailani, S. H. M. (2016). Strategic orientations, sustainable supply chain initiatives, and reverse logistics: Empirical evidence from an emerging market. International Journal of Operations & Production Management. https://doi.org/10.1108/IJOPM-06-2014-0252.

    Google Scholar 

  • Huscroft, J. R., Hazen, B. T., Hall, D. J., Skipper, J. B., & Hanna, J. B. (2014). Reverse logistics in the pharmaceuticals industry: A systemic analysis. The International Journal of Logistics Management, 25(2), 379–398. https://doi.org/10.1108/IJLM-08-2012-0073.

    Article  Google Scholar 

  • Jakhar, S. K. (2014). Designing the green supply chain performance optimisation model. Global Journal of Flexible Systems Management, 15(3), 235–259.

    Article  Google Scholar 

  • Jayaraman, V., & Luo, Y. (2003). Creating competitive advantages through new value creation: A reverse logistics perspective. Academy of Management Perspectives, 21(2), 56–74. https://doi.org/10.5465/amp.2007.25356512.

    Article  Google Scholar 

  • Jena, J., Jena, J., Sidharth, S., Sidharth, S., Thakur, L. S., Thakur, L. S., et al. (2017). Total interpretive structural modeling (TISM): Approach and application. Journal of Advances in Management Research, 14(2), 162–181.

    Article  Google Scholar 

  • Jindal, A., & Sangwan, K. S. (2011). Development of an interpretive structural model of barriers to reverse logistics implementation in Indian industry. In Glocalized solutions for sustainability in manufacturing (pp. 448–453). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19692-8.

  • Kara, S. S., & Onut, S. (2010). Expert systems with applications a two-stage stochastic and robust programming approach to strategic planning of a reverse supply network: The case of paper recycling. Expert Systems with Applications, 37(9), 6129–6137. https://doi.org/10.1016/j.eswa.2010.02.116.

    Article  Google Scholar 

  • Khalid, Z. B., Mufti, N. A., & Ahmad, Y. (2016). Identifying and modeling barriers to collaboration among auto-parts manufacturing SMEs. Pakistan Business Review, 18(2), 487–507.

    Google Scholar 

  • Khor, K. S., Udin, Z. M., Ramayah, T., Hazen, B. T., Udin, Z. M., & Hazen, B. T. (2016). Reverse logistics in Malaysia: The contingent role of institutional pressure. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2016.01.020.

    Google Scholar 

  • Kokkinaki, A., Dekker, R., & Koster, M. (2001). From e-trash to e-treasure: How value can be created by the new e-business models for reverse logistics (No. EI 2000-32/A). Retrieved from http://repub.eur.nl/res/pub/1662/.

  • Kumar, S., & Putnam, V. (2008). Cradle to cradle: Reverse logistics strategies and opportunities across three industry sectors. International Journal of Production Economics, 115, 305–315. https://doi.org/10.1016/j.ijpe.2007.11.015.

    Article  Google Scholar 

  • Laribi, L., & Dhouib, D. (2016). Barriers analysis for reverse logistics adoption in Tunisian enterprises. In 3rd International Conference on Logistics operations management (GOL), May 2016 (pp. 1–8). IEEE.

  • Lehmann, S. (2015). Barriers to implementing reverse logistics in South Australian construction organisations. Supply Chain Management: An International Journal, 20(2), 179–204. https://doi.org/10.1108/SCM-10-2014-0325.

    Article  Google Scholar 

  • Mangla, S., Madaan, J., & Chan, F. T. (2012). Analysis of performance focused variables for multi-objective flexible decision modeling approach of product recovery systems. Global Journal of Flexible Systems Management, 13(2), 77–86. https://doi.org/10.1007/s40171-012-0007-4.

    Article  Google Scholar 

  • Mohanty, M., & Shankar, R. (2017). Modelling uncertainty in sustainable integrated logistics using Fuzzy-TISM. Transportation Research Part D: Transport and Environment, 53, 471–491.

    Article  Google Scholar 

  • Nagel, C., & Meyer, P. (1999). Caught between ecology and economy: End-of-life aspects of environmentally conscious manufacturing. Computers & Industrial Engineering, 36(4), 781–792.

    Article  Google Scholar 

  • Ngadiman, N. I. B., Moeinaddini, M., Ghazali, J. B., & Roslan, N. F. B. (2016). Reverse logistics in food industries: A case study in Malaysia. International Journal of Supply Chain Management, 5(3), 91–95.

    Google Scholar 

  • Nikolaou, I. E., Evangelinos, K. I., & Allan, S. (2013). A reverse logistics social responsibility evaluation framework based on the triple bottom line approach. Journal of Cleaner Production, 56, 173–184. https://doi.org/10.1016/j.jclepro.2011.12.009.

    Article  Google Scholar 

  • Ongondo, F. O., Williams, I. D., & Cherrett, T. J. (2011). How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Management, 31(4), 714–730. https://doi.org/10.1016/j.wasman.2010.10.023.

    Article  Google Scholar 

  • Paper, R., & Rubio, S. (2014). Reverse logistics: Overview and challenges for supply chain management. International Journal of Engineering Business Management, 6, 12. https://doi.org/10.5772/58827.

    Article  Google Scholar 

  • Paul, S. K., Sarker, R., & Essam, D. (2014). Real time disruption management for a two-stage batch production–inventory system with reliability considerations. European Journal of Operational Research, 237(1), 113–128.

    Article  Google Scholar 

  • Paul, S. K., Sarker, R., & Essam, D. (2017). A quantitative model for disruption mitigation in a supply chain. European Journal of Operational Research, 257(3), 881–895.

    Article  Google Scholar 

  • Poduval, P. S., & Pramod, V. R. (2015). Interpretive structural modeling (ISM) and its application in analyzing factors inhibiting implementation of total productive maintenance (TPM). International Journal of Quality & Reliability Management, 32(3), 308–331.

    Article  Google Scholar 

  • Ponce-Cueto, E., González Manteca, J. Á., & Carrasco-Gallego, R. (2010). Reverse logistics practices for recovering mobile phones in Spain. Supply Chain Forum: An International Journal, 12(2), 104–114.

    Article  Google Scholar 

  • Prahinski, C., & Kocabasoglu, C. (2006). Empirical research opportunities in reverse supply chains. Omega. https://doi.org/10.1016/j.omega.2005.01.003.

    Google Scholar 

  • Prakash, C., & Barua, M. K. (2015). Fuzzy environment. Journal of Manufacturing Systems. https://doi.org/10.1016/j.jmsy.2015.03.001.

    Google Scholar 

  • Prakash, C., & Barua, M. K. (2016). A multi-criteria decision-making approach for prioritizing reverse logistics adoption barriers under fuzzy environment: Case of Indian Electronics Industry. Global Business Review, 17(5), 1107–1124. https://doi.org/10.1177/0972150916656667.

    Article  Google Scholar 

  • Purohit, J. K., Mittal, M. L., Mittal, S., & Sharma, M. K. (2016). Interpretive structural modeling-based framework for mass customisation enablers: An Indian footwear case. Production Planning & Control, 27(9), 774–786. https://doi.org/10.1080/09537287.2016.1166275.

    Article  Google Scholar 

  • Raci, V., & Shankar, R. (2005). Analysis of interactions among the barriers of reverse logistics. Technological Forecasting and Social Change, 72(8), 1011–1029. https://doi.org/10.1016/j.techfore.2004.07.002.

    Article  Google Scholar 

  • Rajesh, R. (2017). Technological capabilities and supply chain resilience of firms: A relational analysis using Total Interpretive Structural Modeling (TISM). Technological Forecasting and Social Change, 118, 161–169.

    Article  Google Scholar 

  • Rameezdeen, R., Chileshe, N., Hosseini, M. R., & Lehmann, S. (2016). A qualitative examination of major barriers in implementation of reverse logistics within the South Australian construction sector. International Journal of Construction Management, 16(3), 185–196. https://doi.org/10.1016/j.rser.2016.09.067.

    Article  Google Scholar 

  • Ravi, V. (2014). Reverse logistics operations in automobile industry: A case study using SAP-LAP approach. Global Journal of Flexible Systems Management, 15(4), 295–303.

    Article  Google Scholar 

  • Ravi, V., Shankar, R., & Tiwari, M. K. (2005). Analyzing alternatives in reverse logistics for end-of-life computers: ANP and balanced scorecard approach. Computers & Industrial Engineering, 48(2), 327–356. https://doi.org/10.1016/j.cie.2005.01.017.

    Article  Google Scholar 

  • Rick, G., & Liu, N. (2007). Using interpretive structural modeling to identify and quantify interactive risks. In OrlandoUSA: ASTIN Colloquium, (pp. 1–11).

  • Rogers, D. S., & Tibben-Lembke, R. S. (1998). Going backwards: Reverse logistics trends and practices going backwards. Logistics Management, 2, 275. https://doi.org/10.1006/jema.2001.0488.

    Google Scholar 

  • Rubio, S., Chamorro, A., & Miranda, F. J. (2008). Characteristics of the research on reverse logistics (1995–2005). International Journal of Production Research, 46(4), 1099–1120. https://doi.org/10.1080/00207540600943977.

    Article  Google Scholar 

  • Sasikumar, P., & Kannan, G. (2008). Issues in reverse supply chains, part I: End-of-life product recovery and inventory management—an overview. International Journal of Sustainable Engineering, 1(3), 154–172. https://doi.org/10.1080/19397030802433860.

    Article  Google Scholar 

  • Sharma, S. K., Panda, B. N., Mahapatra, S. S., & Sahu, S. (2011). Analysis of barriers for reverse logistics: An Indian perspective. International Journal of Modeling and Optimization, 1(2), 101–106.

    Article  Google Scholar 

  • Shibin, K. T., Gunasekaran, A., Papadopoulos, T., Dubey, R., Singh, M., & Wamba, S. F. (2016). Enablers and barriers of flexible green supply chain management: A total interpretive structural modeling approach. Global Journal of Flexible Systems Management, 17(2), 171–188.

    Article  Google Scholar 

  • Sindhwani, R., Sindhwani, R., Malhotra, V., & Malhotra, V. (2017). A framework to enhance agile manufacturing system: A total interpretive structural modelling (TISM) approach. Benchmarking: An International Journal, 24(2), 467–487.

    Article  Google Scholar 

  • Singh, A. K., & Sushil, (2013). Modeling enablers of TQM to improve airline performance. International Journal of Productivity and Performance Management, 62(3), 250–275.

    Article  Google Scholar 

  • Sorker, F., & Shukla, V. (2009). Reverse logistics of passenger cars in the UK—an examination, 1–8.

  • Soti, A., Kaushal, O. P., & Shankar, R. (2011). Modelling the barriers of Six Sigma using interpretive structural modelling. International Journal of Business Excellence, 4(1), 94–110.

    Article  Google Scholar 

  • Starostka-Patyk, M., Zawada, M., Pabian, A., & Abed, M. (2013). Barriers to reverse logistics implementation in enterprises. In 2013 International conference on advanced logistics and transport (ICALT), (pp. 506–511). IEEE.

  • Stock, J.R. (1992). Reverse logistics: White paper. Council of Logistics Management.

  • Sushil. (2012). Interpreting the interpretive structural model. Global Journal of Flexible Systems Management, 13(2), 87–106.

    Article  Google Scholar 

  • Sushil. (2016). How to check correctness of total interpretive structural models? Annals of Operations Research. https://doi.org/10.1007/s10479-016-2312-3.

    Google Scholar 

  • Sushil (2017) Modified ISM/TISM process with simultaneous transitivity checks for reducing direct pair comparisons. Global Journal of Flexible Systems Management, 18(4), 331–351.

    Article  Google Scholar 

  • Talib, F., Rahman, Z., & Qureshi, M. N. (2011). An interpretive structural modelling approach for modelling the practices of total quality management in service sector. International Journal of Modelling in Operations Management, 1(3), 223–250.

    Article  Google Scholar 

  • Taylor, P., Subramanian, N., Gunasekaran, A., & Abdulrahman, M. (2014). Factors for implementing end-of-life product reverse logistics in the Chinese manufacturing sector. International Journal of Sustainable Development and World Ecology. https://doi.org/10.1080/13504509.2014.906003.

    Google Scholar 

  • Tibben-lembke, R. S., & Rogers, D. S. (2002). Differences between forward and reverse logistics in a retail environment. Supply Chain Management: An International Journal, 7(5), 271–282. https://doi.org/10.1108/13598540210447719.

    Article  Google Scholar 

  • Venkatesh, V. G., Rathi, S., & Patwa, S. (2015). Analysis on supply chain risks in Indian apparel retail chains and proposal of risk prioritization model using Interpretive structural modeling. Journal of Retailing and Consumer Services, 26, 153–167. https://doi.org/10.1016/j.jretconser.2015.06.001.

    Article  Google Scholar 

  • Verma, R. K. (2014). Implementation of interpretive structural model and topsis in manufacturing industries for supplier selection. Industrial Engineering Letters, 4(5), 1–9.

    Google Scholar 

  • Wang, X., Gaustad, G., Babbitt, C. W., & Richa, K. (2014). Resources, conservation and recycling economies of scale for future lithium-ion battery recycling infrastructure. Resources, Conservation and Recycling, 83, 53–62. https://doi.org/10.1016/j.resconrec.2013.11.009.

    Article  Google Scholar 

  • Zhang, Tongzhu, Chu, Jiangwei, Wang, Xueping, Liu, Xianghai, & Cui, Pengfei. (2011). Development pattern and enhancing system of automotive components remanufacturing industry in China. Resources, Conservation and Recycling, 55(6), 613–622.

    Article  Google Scholar 

  • Zhu, Q., Sarkis, J., & Lai, K. (2014). Supply chain-based barriers for truck-engine remanufacturing in China. Transportation Research Part E, 68, 103–117. https://doi.org/10.1016/j.tre.2014.05.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mithun Ali.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Appendices

Appendix

See Tables 9 and 10.

Table 9 Some articles with RL barriers
Table 10 Experts’ feedback on barriers to RL

Key Questions

  1. 1.

    We explored barriers to reverse logistics in the computer supply chain as a major research focus or question?

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.M., Arafin, A., Moktadir, M.A. et al. Barriers to Reverse Logistics in the Computer Supply Chain Using Interpretive Structural Model. Glob J Flex Syst Manag 19 (Suppl 1), 53–68 (2018). https://doi.org/10.1007/s40171-017-0176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40171-017-0176-2

Keywords

Navigation