Skip to main content
Log in

GRASP for sequencing mixed models in an assembly line with work overload, useless time and production regularity

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

An Erratum to this article was published on 07 January 2016

Abstract

A GRASP algorithm is presented for solving a sequencing problem in a mixed-model assembly line. The problem is focused on obtaining a manufacturing sequence that completes the greatest possible amount of required work and fulfils the production regularity property. The implemented GRASP algorithm is compared with other resolution procedures by means of instances from a case study linked to the Nissan’s engine plant in Barcelona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Battaïa, O., Dolgui, A.: A taxonomy of line balancing problems and their solution approaches. Int. J. Prod. Econ. 142(2), 259–277 (2013)

    Article  Google Scholar 

  2. Boysen, N., Fliedner, M., Scholl, A.: Sequencing mixed-model assembly lines: survey, classification and model critique. Eur. J. Oper. Res. 192(2), 349–373 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bautista, J., Cano, A.: Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimization and interruption rules. Eur. J. Oper. Res. 210, 495–513 (2011)

    Article  MATH  Google Scholar 

  4. Yano, C.A., Rachamadugu, R.: Sequencing to minimize work overload in assembly lines with product options. Manag. Sci. 37(5), 572–586 (1991)

    Article  Google Scholar 

  5. Bautista, J., Pereira, J., Adenso-Díaz, B.: A GRASP approach for the extended car sequencing problema. J. Sched. 11(1), 3–16 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bautista, J., Cano, A., Alfaro, R., Batalla, C.: Impact of the production mix preservation on the ORV problem. In: Bielza, C., et al. (eds.) CAEPIA 2013, LNAI 8109, pp. 250–259. Springer, Berlin (2013)

    Google Scholar 

  7. Scholl, A., Klein, R., Domschke, W.: Pattern based vocabulary building for effectively sequencing mixed-model assembly lines. J. Heuristics 4(4), 359–381 (1998)

    Article  MATH  Google Scholar 

  8. Omar, M., Sarker, R., Othman, W.A.M.: A just-in-time three-level integrated manufacturing system for linearly time-varying demand process. Appl. Math. Model. 37(3), 1275–1281 (2013)

    Article  Google Scholar 

  9. Fullerton, R.R., Kennedy, F.A., Widener, S.K.: Lean manufacturing and firm performance: the incremental contribution of lean management accounting practices. J. Oper. Manag. 32(7–8), 414–428 (2014)

    Article  Google Scholar 

  10. Bautista, J., Cano, A., Alfaro, R.: Modeling and solving a variant of the mixed-model sequencing problem with work overload minimisation and regularity constraints. An application in Nissan’s Barcelona Plant. Expert Syst. Appl. 39, 11001–11010 (2012)

    Article  Google Scholar 

  11. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Global Optim. 6(2), 109–133 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures: advances, hybridizations, and applications: In: Gendreau, M., Potvin, J.Y (eds.) Handbook of metaheuristics, pp. 283–319. Springer, Berlin (2010)

Download references

Acknowledgments

This work was funded by the Ministerio de Economía y Competitividad (Spanish Government) through the FHI-SELM2 (TIN2014-57497-P) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Bautista.

Appendix

Appendix

Model for MAX–SAT production mix restriction problem:

Nomenclature:

I :

Set of product types \(\left( {I\,{:}\,i=1,\ldots ,|I|} \right) \)

\(\vec {d},D\) :

Vector of demand \(\vec {d}=(d_{1},\ldots ,d_{|I|})\), and total demand \(D\equiv T=\sum \nolimits _{\forall i} d_i \)

\(\vec {\lambda }\) :

Vector of production mix \(\vec {\lambda }=(\lambda _{1},\ldots ,\lambda _{|I|})\): \(\vec {\lambda }=\vec {d}/D\)

\(\pi (T)\) :

Sequence of products \(\pi (T)=\left( {\pi _1 ,\ldots ,\pi _T } \right) \)

\(x_{i,t} \) :

Binary variable equal to 1 if a product unit \(i\in I\) is assigned to the position \(t \quad \left( {t=1,\ldots ,T} \right) \,\)of the sequence \(\pi (T)\) and to 0 otherwise

\(X_{i,\,t} \) :

Number of units of type \(i\in I\) in the subsequence of products \(\pi (t)\subseteq \pi (T)\). Obviously \(X_{i,\,t} =\sum \nolimits _{\tau =1}^t x_{i,\tau } \quad \forall i\forall t\)

\(z_{i,t}^+ \) :

Binary variable equal to 1 if \(X_{i,\,t} \left( {i\in I,\,t=1,\ldots ,T} \right) \) is greater than the upper limit \(\lfloor \lambda _i t\rfloor \) of production mix preservation and to 0 otherwise

\(z_{i,t}^- \) :

Binary variable equal to 1 if \(X_{i,\,t}\left( i\in I,\,t=1,\ldots ,T \right) \) is less than the lower limit \(\lceil \lambda _i t\rceil \) of production mix preservation and to 0 otherwise

The objective is: \(\lfloor \lambda _i t\rfloor \le X_{i,\,t} \le \lceil \lambda _i t\rceil ,\,\,X_{i,\,T} =d_i \,\,\forall i\in I\,\forall t=1,\ldots ,T\)

MAX–SAT–PMR problem model:

$$\begin{aligned} \min Z=\mathop {\sum }\limits _{i=1}^{|I|} \mathop {\sum }\limits _{t=1}^T \left( {z_{i,t}^+ +z_{i,t}^- } \right) \end{aligned}$$
(18)

Subject to:

$$\begin{aligned}&\sum \limits _{i=1}^{|I|} x_{i,t} =1\quad \forall t=1,\ldots ,T \end{aligned}$$
(19)
$$\begin{aligned}&\sum \limits _{t=1}^T x_{i,t} =d_i \quad \forall i\in I \end{aligned}$$
(20)
$$\begin{aligned}&X_{i,t} -\sum \limits _{\tau =1}^t x_{i,\tau } =0\quad \forall i\in I\,\forall t=1,\ldots ,T \end{aligned}$$
(21)
$$\begin{aligned}&x_{i,t} =\left\{ {{\begin{array}{l} {1\Leftrightarrow \pi _t =i} \\ {0\Leftrightarrow \pi _t \ne i} \\ \end{array} }} \right\} \quad \forall i\in I\,\forall t=1,\ldots ,T \end{aligned}$$
(22)
$$\begin{aligned}&z_{i,t}^+ =\left\{ {{\begin{array}{l} {1\Leftrightarrow X_{i,\,t} > \lceil \lambda _i t}\rceil \\ {0\Leftrightarrow X_{i,\,t} \le \lceil \lambda _i t}\rceil \\ \end{array} }} \right\} \quad \forall i\in I\,\forall t=1,\ldots ,T \end{aligned}$$
(23)
$$\begin{aligned}&z_{i,t}^- =\left\{ {{\begin{array}{l} {1\Leftrightarrow X_{i,\,t} < \lfloor \lambda _i t}\rfloor \\ {0\Leftrightarrow X_{i,\,t} \ge \lfloor \lambda _i t\rfloor } \\ \end{array} }} \right\} \quad \forall i\in I\,\forall t=1,\ldots ,T \end{aligned}$$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bautista, J., Alfaro-Pozo, R. & Batalla-García, C. GRASP for sequencing mixed models in an assembly line with work overload, useless time and production regularity. Prog Artif Intell 5, 27–33 (2016). https://doi.org/10.1007/s13748-015-0071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-015-0071-z

Keywords

Navigation