Skip to main content
Log in

New vistas on honey bee vision

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

The honey bee is a traditional animal model for the study of visual perception, learning, and memory. Extensive behavioral studies have shown that honey bees perceive, learn, and memorize colors, shapes, and patterns when these visual cues are paired with sucrose reward. Bee color vision is trichromatic, based on three photoreceptor types (S, M, L), which peak in the UV, blue, and green region of the spectrum. Perceptual color spaces have been proposed to account for bee color vision, and the anatomy of the visual neuropils in the bee brain was described to a large extent. In the last decade, conceptual and technical advances improved significantly our comprehension of visual processing in bees. At the behavioral level, unexpected cognitive visual capacities were discovered such as categorical and conceptual categorization. At the neurobiological level, molecular analyses of the compound eye revealed an intricate heterogeneity in the distribution of photoreceptors in the retina. Spatial segregation and integration of visual information in the bee brain has been analyzed at functional levels so far unexploited. These recent discoveries associated with the perspective of accessing the bee brain of harnessed bees while they perceive and learn visual cues open new avenues toward a comprehension of the neural substrates of visual perception and learning in bees. Understanding how the miniature brain of bees achieves sophisticated visual performances is a fundamental goal for the comparative study of vision and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Abel, J.R., Menzel, R. (2001) Structure and response patterns of olfactory interneurons in the honey bee, Apis mellifera. J. Comp. Neurol. 437, 363–383

    Article  PubMed  CAS  Google Scholar 

  • Anderson, A.M. (1972) The ability of honey bees to generalize visual stimuli. In: Wehner, R. (ed.) Information Processing in the Visual Systems of Arthropods. Springer, Berlin.

  • Anderson, A.M. (1977) Parameters determining the attractiveness of stripe patterns in the honey bee. Anim. Behav. 25, 80–87

    Article  Google Scholar 

  • Autrum, H.J., Zwehl, V. (1964) Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol. 48, 357–384

    Article  Google Scholar 

  • Avarguès-Weber, A., Deisig, N., Giurfa, M. (2011a) Visual cognition in social insects. Annu. Rev. Entomol. 56, 423–443

    Article  CAS  Google Scholar 

  • Avarguès-Weber, A., Dyer, A.G., Giurfa, M. (2011b) Conceptualization of above and below relationships by an insect. Proc. R. Soc. B 278, 898–905

    Article  Google Scholar 

  • Avarguès-Weber, A., Portelli, G., Benard, J., Dyer, A.G., Giurfa, M. (2010) Configural processing enables discrimination and categorization of face-like stimuli in honey bees. J. Exp. Biol. 213, 593–601

    Article  PubMed  Google Scholar 

  • Backhaus, W. (1991) Color opponent coding in the visual system of the honey bee. Vision Res. 31, 1381–1397

    Article  PubMed  CAS  Google Scholar 

  • Benard, J., Stach, S., Giurfa, M. (2006) Categorization of visual stimuli in the honey bee Apis mellifera. Anim. Cogn. 9, 257–70

    Article  PubMed  Google Scholar 

  • Bicker, G., Schäfer, S., Rehder, V. (1987) Chemical neuroanatomy of the honey bee brain. In: Menzel, R., Mercer, A. (eds.) Neurobiology and Behavior of Honey Bees, pp. 202–224. Springer, Berlin

    Chapter  Google Scholar 

  • Bitterman, M.E. (1983) Classical conditioning of proboscis extension in honey bees (Apis mellifera). J. Comp. Psychol. 97, 107–119

    Article  PubMed  CAS  Google Scholar 

  • Campan, R., Lehrer, M. (2002) Discrimination of closed shapes by two species of bee, Apis mellifera and Megachile rotundata. J. Exp. Biol. 205, 559–572

    PubMed  Google Scholar 

  • Chittka, L. (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. J. Comp. Physiol. A 170, 533–543

    Google Scholar 

  • Chittka, L., Geiger, K. (1995) Can honey bees count landmarks? Anim. Behav. 49, 159–164

    Article  Google Scholar 

  • Chittka, L., Niven, J. (2009) Are bigger brains better? Curr. Biol. 19, R995–R1008

    Article  PubMed  CAS  Google Scholar 

  • Chittka, L., Thomson, J.D., Waser, N.M. (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86, 361–377

    Article  CAS  Google Scholar 

  • Christensen, T.A., Pawlowski, V.M., Lei, H., Hildebrand, J.G. (2000) Multi-unit recordings reveal context-dependent modulation of synchrony in odor-specific neural ensembles. Nat. Neurosci. 3, 927–931

    Article  PubMed  CAS  Google Scholar 

  • Collett, T.S. (1996) Insect navigation en route to the goal: multiple strategies for the use of landmarks. J. Exp. Biol. 199, 227–235

    Article  PubMed  Google Scholar 

  • Collett, T.S., Zeil, J. (1998) Places and landmarks: an arthropod perspective. In: Healy, S. (ed.) Spatial Representation in Animals. Oxford University Press, Oxford.

  • Collett, T.S., Collett, M. (2002) Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542–552

    Article  PubMed  CAS  Google Scholar 

  • Collett, T.S., Graham, P., Durier, V. (2003) Route learning by insects. Curr. Opin. Neurobiol. 13, 718–725

    Article  PubMed  CAS  Google Scholar 

  • Dacke, M., Srinivasan, M.V. (2008) Evidence for counting in insects. Anim. Cogn. 11, 683–689

    Article  PubMed  Google Scholar 

  • Dafni, A., Lehrer, M., Keyan, P.G. (1997) Spatial flower parameters and insect spatial vision. Biol. Rev. 72, 239–282

    Article  Google Scholar 

  • Daly, K.C., Wright, G.A., Smith, B.H. (2004) Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta. J. Neurophysiol. 92, 236–254

    Article  PubMed  Google Scholar 

  • Daumer, K. (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. J. Comp. Physiol. 38, 413–478

    Google Scholar 

  • de Brito Sanchez, M.G., Chen, C., Li, J., Liu, F., Gauthier, M. (2008) Behavioral studies on tarsal gustation in honey bees: sucrose responsiveness and sucrose-mediated olfactory conditioning. J. Comp. Physiol. A 194, 861–869

    Article  CAS  Google Scholar 

  • Denker, M., Finke, R., Schaupp, F., Grün, S., Menzel, R. (2010) Neural correlates of odor learning in the honey bee antennal lobe. Eur. J. Neurosci. 31, 119–133

    Article  PubMed  Google Scholar 

  • DeVoe, R.D., Kaiser, W., Ohm, J., Stone, L.S. (1982) Horizontal movement detectors of honey bees: directionally-selective visual neurons in the lobula and brain. J. Comp. Physiol. 147, 155–170

    Article  Google Scholar 

  • Doumas, L.A.A., Hummel, J.E., Sandhofer, C.M. (2008) A theory of the discovery and predication of relational concepts. Psychol. Rev. 115, 1–43

    Article  PubMed  Google Scholar 

  • Dyer, A.G., Paulk, A.C., Reser, D.H. (2011) Colour processing in complex environments: insights from the visual system of bees. Proc. Biol. Sci. 278, 952–959

    Article  PubMed  Google Scholar 

  • Ehmer, B., Gronenberg, W. (2002) Segregation of visual input to the mushroom bodies in the honey bee (Apis mellifera). J. Comp. Neurol. 451, 362–373

    Article  PubMed  Google Scholar 

  • Ernst, R., Heisenberg, M. (1999) The memory template in Drosophila pattern vision at the flight simulator. Vision Res. 39, 3920–3933

    Article  PubMed  CAS  Google Scholar 

  • Faber, T., Joerges, J., Menzel, R. (1999) Associative learning modifies neural representations of odours in the insect brain. Nat. Neurosci. 2, 74–78

    Article  PubMed  CAS  Google Scholar 

  • Farooqui, T., Robinson, K., Vaessin, H., Smith, B.H. (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honey bee. J. Neurosci. 23, 5370–5380

    PubMed  CAS  Google Scholar 

  • Farooqui, T., Vaessin, H., Smith, B.H. (2004) Octopamine receptors in the honey bee (Apis mellifera) brain and their disruption by RNA-mediated interference. J. Insect Physiol. 50, 701–713

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, P.C., Locatelli, F.F., Person-Rennell, N., Deleo, G., Smith, B.H. (2009) Associative conditioning tunes transient dynamics of early olfactory processing. J. Neurosci. 29, 10191–10202

    Article  PubMed  CAS  Google Scholar 

  • Gallistel, C.R. (1993) A conceptual framework for the study of numerical estimation and arithmetic reasoning in animals. In: Boysen, S.T., Capaldi, E.J. (eds.) The Development of Numerical Competence: Animal and Human Models, pp. 211–223. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Gerber, B., Smith, B. (1998) Visual modulation of olfactory learning in honeybee. J. Exp. Biol. 201, 2213–2217

    PubMed  CAS  Google Scholar 

  • Ghirlanda, S., Enquist, M. (2003) A century of generalization. Anim. Behav. 66, 15–36

    Article  Google Scholar 

  • Giger, A., Srinivasan, M.V. (1997) Honey bee vision: analysis of orientation and colour in the lateral, dorsal and ventral fields of view. J. Exp. Biol. 200, 1271–1280

    PubMed  Google Scholar 

  • Giurfa, M. (2007) Behavioral and neural analysis of associative learning in the honey bee: a taste from the magic well. J. Comp. Physiol. A 193, 801–24

    Article  Google Scholar 

  • Giurfa, M., Menzel, R. (1997) Insect visual perception: complex ability of simple nervous systems. Curr. Opin. Neurobiol. 7, 505–513

    Article  PubMed  CAS  Google Scholar 

  • Giurfa, M., Vorobyev, M. (1997) The detection and recognition of color stimuli by honey bees: performance and mechanisms. Israel J. Plant Sci. 45, 129–140

    Google Scholar 

  • Giurfa, M., Backhaus, W., Menzel, R. (1995) Color and angular orientation in the discrimination of bilateral symmetric patterns in the honey bee. Naturwissenschaften 82, 198–201

    Article  CAS  Google Scholar 

  • Giurfa, M., Eichmann, B., Menzel, R. (1996a) Symmetry perception in an insect. Nature 382, 458–461

    Article  PubMed  CAS  Google Scholar 

  • Giurfa, M., Zaccardi, G., Vorobyev, M. (1999) How do bees detect coloured targets using different regions of their compound eyes. J. Comp. Physiol. A 185, 591–600

    Article  Google Scholar 

  • Giurfa, M., Vorobyev, M., Kevan, P., Menzel, R. (1996b) Detection of coloured stimuli by honey bees: minimum visual angles and receptor specific contrasts. J. Comp. Physiol. A 178, 699–709

    Article  Google Scholar 

  • Giurfa, M., Vorobyev, M., Brandt, R., Posner, B., Menzel, R. (1997) Discrimination of coloured stimuli by honey bees: alternative use of achromatic and chromatic signals. J. Comp. Physiol. A 180, 235–243

    Article  Google Scholar 

  • Giurfa, M., Zhang, S., Jenett, A., Menzel, R., Srinivasan, M.V. (2001) The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410, 930–933

    Article  PubMed  CAS  Google Scholar 

  • Giurfa, M., Fabre, E., Flaven-Pouchon, J., Groll, H., Oberwallner, B., et al. (2009) Olfactory conditioning of the sting extension reflex in honey bees: memory dependence on trial number interstimulus interval intertrial interval and protein synthesis. Learn. Mem. 16, 761–765

    Article  PubMed  Google Scholar 

  • Goetz, K.G., Hengstenberg, B., Biesinger, R. (1979) Optomotor control of wing beat and body posture in Drosophila. Biol. Cybern. 35, 101–112

    Article  Google Scholar 

  • Grant, V. (1950) The flower constancy of bees. Botanic Rev. 16, 379–398

    Article  Google Scholar 

  • Gribakin, F.G. (1975) Functional morphology of the compound eye of the bee. In: Horridge, G.A. (ed.) The Compound Eye and Vision of Insects, pp. 154–176. Clarendon, Oxford

    Google Scholar 

  • Griffin, D.R. (1992) Animal Minds: Beyond Cognition to Consciousness. University Chicago Press, Chicago

  • Gronenberg, W. (1986) Physiological and anatomical properties of optical input-fibres to the mushroom body in the bee brain. J. Insect Physiol. 32, 695–704

    Article  Google Scholar 

  • Gross, H.J., Pahl, M., Si, A., Zhu, H., Tautz, J., et al. (2009) Number-based visual generalisation in the honey bee. PLoS ONE 4, e4263

    Article  PubMed  CAS  Google Scholar 

  • Halford, G.S., Wilson, W.H., Phillips, S. (2010) Relational knowledge: the foundation of higher cognition. Trends. Cogn. Sci. 14, 497–505

    Article  PubMed  Google Scholar 

  • Hammer, M. (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honey bees. Nature 366, 59–63

    Article  Google Scholar 

  • Hammer, M., Menzel, R. (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honey bees. Learn. Mem. 5, 146–156

    PubMed  CAS  Google Scholar 

  • Hempel de Ibarra, N., Giurfa, M. (2003) Discrimination of closed shapes by honey bees requires only contrast to the long wavelength receptor type. Anim. Behav. 66, 903–910

    Article  Google Scholar 

  • Hempel de Ibarra, N., Vorobyev, M., Brandt, R., Giurfa, M. (2000) Detection of bright and dim colours by honey bees. J. Exp. Biol. 203, 3289–3298

    PubMed  CAS  Google Scholar 

  • Hempel de Ibarra, N., Giurfa, M., Vorobyev, M.V. (2002) Discrimination of coloured patterns by honey bees through chromatic and achromatic cues. J. Comp. Physiol. A 188, 503–512

    Article  CAS  Google Scholar 

  • Herrnstein, R.J. (1990) Levels of stimulus control: a functional approach. Cognition 37, 133–166

    Article  PubMed  CAS  Google Scholar 

  • Hertel, H. (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J. Comp. Physiol. 137, 215–231

    Article  Google Scholar 

  • Hertel, H., Maronde, U. (1987) The physiology and morphology of centrally projecting visual interneurons in the honey bee brain. J. Exp. Biol. 133, 301–315

    Google Scholar 

  • Hertel, H., Schäfer, S., Maronde, U. (1987) The physiology and morphology of visual commissures in the honey bee brain. J. Exp. Biol. 133, 283–300

    Google Scholar 

  • Hertz, M. (1929) Die Organisation des optischen Feldes bei der Biene. I. Z. vergl. Physiol. 8, 693–748

    Article  Google Scholar 

  • Hertz, M. (1933) Über figurale Intensität und Qualität in der optische Wahrnehmung der Biene. Biol. Zbl. 53, 10–40

    Google Scholar 

  • Hertz, M. (1935) Die Untersuchungen über den Formensinn der Honigbiene. Naturwissenschaften 23, 618–624

    Article  Google Scholar 

  • Homberg, U. (1985) Interneurons of the central complex of the bee brain (Apis mellifica L.). J. Insect Physiol 31, 251–264

    Article  Google Scholar 

  • Honey Bee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honey bee Apis mellifera. Nature 443, 931–949

    Article  CAS  Google Scholar 

  • Hori, S., Takeuchi, H., Arikawa, K., Kinoshita, M., Ichikawa, N., et al. (2006) Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honey bee Apis mellifera L. J. Comp. Physiol. A 192, 691–700

    Article  Google Scholar 

  • Hori, S., Takeuchi, H., Kubo, T. (2007) Associative learning and discrimination of motion cues in the harnessed honey bee Apis mellifera L. J. Comp. Physiol. A 193, 825–833

    Article  Google Scholar 

  • Horridge, A. (1997) Pattern discrimination by the honey bee: disruption as a cue. J. Comp. Physiol. A 181, 267–277

    Article  Google Scholar 

  • Horridge, A. (2009) Generalization in visual recognition by the honey bee (Apis mellifera): a review and explanation. J. Insect Physiol. 55, 499–511

    Article  PubMed  CAS  Google Scholar 

  • Horridge, G.A., Zhang, S.W. (1995) Pattern vision in honey bees (Apis mellifera): flower-like patterns with no predominant orientation. J. Insect Physiol. 41, 681–688

    Article  CAS  Google Scholar 

  • Horridge, G.A. (1996) The honey bee (Apis mellifera) detects bilateral symmetry and discriminates its axis. J. Insect Physiol. 42, 755–764

    Article  CAS  Google Scholar 

  • Joerges, J., Küttner, A., Galizia, C.G., Menzel, R. (1997) Representation of odours and odour mixtures visualized in the honey bee brain. Nature 387, 285–288

    Article  CAS  Google Scholar 

  • Kien, J., Menzel, R. (1977a) Chromatic properties of interneurons in the optic lobes of the bee. I. Broad band neurons. J. Comp. Physiol. A 113, 17–34

    Google Scholar 

  • Kien, J., Menzel, R. (1977b) Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J. Comp. Physiol. A 113, 35–53

    Article  Google Scholar 

  • Kirschner, S., Kleineidam, C.J., Zube, C., Rybak, J., Grünewald, B., et al. (2006) Dual olfactory pathway in the honey bee, Apis mellifera. J. Comp. Neurol. 499, 933–952

    Article  PubMed  Google Scholar 

  • Kühn, A. (1927) Über den Farbensinn der Bienen. Z. vergl. Physiol. 5, 762–800

    Article  Google Scholar 

  • Kühn, A., Pohl, R. (1921) Dressurfähigkeit der Bienen auf Spektrallinien. Naturwissenschaften 9, 738–740

    Article  Google Scholar 

  • Kuwabara, M. (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica. J. Faculty Sci., Hokkaido Univ., Series VI. Zoology 13, 458–464

    Google Scholar 

  • Labhart, T., Meyer, E.P. (2002) Neural mechanisms in insect navigation: polarization compass and odometer. Curr. Opin. Neurobiol. 12, 707–714

    Article  PubMed  CAS  Google Scholar 

  • Lamberts, K., Shanks, D. (1997) Knowledge, Concepts, and Categories. Psychology, Cambridge

    Google Scholar 

  • Lehrer, M. (1994) Spatial vision in the honey bee: the use of different cues in different tasks. Vision Res. 34, 2363–2385

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, M. (1998) Looking all around: honey bees use different cues in different eye regions. J. Exp. Biol. 201, 3275–3292

    PubMed  Google Scholar 

  • Lehrer, M. (1999) Dorsoventral asymmetry of colour discrimination in bees. J. Comp. Physiol. A 184, 195–206

    Article  Google Scholar 

  • Lozano, V.C., Armengaud, C., Gauthier, M. (2001) Memory impairment induced by cholinergic antagonists injected into mushroom bodies of the honey bee. J. Comp. Physiol. A 187, 249–254

    Article  PubMed  CAS  Google Scholar 

  • Luu, T., Cheung, A., Ball, D., Srinivasan, M.V. (2011) Honey bee flight: a novel ‘streamlining’ response. J. Exp. Biol. 214, 2215–2225

    Article  PubMed  Google Scholar 

  • Mareschal, D., Quinn, P.C., Lea, S.E.G. (2010) The Making of Human Concepts. Oxford University Press, Oxford

  • Mauelshagen, J. (1993) Neural correlates of olfactory learning paradigms in an identified neuron in the honey bee brain. J. Neurophysiol. 69, 609–625

    PubMed  CAS  Google Scholar 

  • Menzel, R. (1974) Spectral sensitivity of monopolar cells in the bee lamina. J. Comp. Physiol. A 93, 337–346

    Article  Google Scholar 

  • Menzel, R. (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum, H. (ed.) Invertebrate Photoreceptors—Handbook of Sensory Physiology, pp. 503–580. Springer, Berlin

    Google Scholar 

  • Menzel, R. (1999) Memory dynamics in the honey bee. J. Comp. Physiol. A 185, 323–340

    Article  Google Scholar 

  • Menzel, R., Snyder, A.W. (1974) Polarized light detection in the bee, Apis mellifera. J. Comp. Physiol. 88, 247–270

    Article  Google Scholar 

  • Menzel, R., Blakers, M. (1976) Colour receptors in the bee eye—morphology and spectral sensitivity. J. Comp. Physiol. 108, 11–33

    Article  Google Scholar 

  • Menzel, R., Lieke, E. (1983) Antagonistic color effects in spatial vision of honey bees. J. Comp. Physiol. 151, 441–448

    Article  Google Scholar 

  • Menzel, R., Backhaus, W. (1991) Color vision in insects. In: Gouras, P. (ed.) Vision and Visual Dysfunction the Perception of Color, pp. 262–288. Macmillan, London

    Google Scholar 

  • Menzel, R., Ventura, D.F., Hertel, H., de Souza, J.M., Greggers, U. (1986) Spectral sensitivity of photoreceptors in insect compound eyes: comparison of species and methods. J. Comp. Physiol. A 158, 165–177

    Article  Google Scholar 

  • Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., et al. (2005) Honey bees navigate according to a map-like spatial memory. Proc. Natl. Acad. Sci. USA 102, 3040–3045

    Article  PubMed  CAS  Google Scholar 

  • Meyer, E. (1984) Retrograde labelling of photoreceptors in different regions of the compound eyes of bees and ants. J. Neurocyt. 13, 825–36

    Article  CAS  Google Scholar 

  • Milde, J.J. (1988) Visual responses of interneurones in the posterior median protocerebrum and the central complex of the honey bee Apis mellifera. J. Insect Physiol. 34, 427–436

    Article  Google Scholar 

  • Mobbs, P.G. (1984) Neural networks in the mushroom bodies of the honey bee. J. Insect Physiol. 30, 43–58

    Article  Google Scholar 

  • Mota, T., Giurfa, M., Sandoz, J.C. (2011a) Color modulates olfactory learning in honey bees by an occasion-setting mechanism. Learn. Mem. 18, 144–155

    Article  Google Scholar 

  • Mota, T., Roussel, E., Sandoz, J.C., Giurfa, M. (2011b) Visual conditioning of the sting extension reflex in harnessed honey bees. J. Exp. Biol. 214, 3577–3587

    Article  Google Scholar 

  • Mota, T., Yamagata, N., Giurfa, M., Gronenberg, W., Sandoz, J.-C. (2011c) Neural organization and visual processing in the anterior optic tubercle of the honey bee brain. J. Neurosci. 31, 11443–11456

    Article  PubMed  CAS  Google Scholar 

  • Müller, U. (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honey bee, Apis mellifera. Neuron 27, 159–168

    Article  Google Scholar 

  • Murphy, G.L. (2002) The Big Book of Concepts. MIT, Cambridge

    Google Scholar 

  • Murphy, G.L. (2010) What are categories and concepts? In: Mareschal, D., Quinn, P.C., Lea, S.E.G. (eds.) The Making of Human Concepts. Oxford University Press, Oxford

    Google Scholar 

  • Niggebrugge, C., Leboulle, G., Menzel, R., Komischke, B., de Ibarra, N.H. (2009) Fast learning but coarse discrimination of colours in restrained honey bees. J. Exp. Biol. 212, 1344–1350

    Article  PubMed  CAS  Google Scholar 

  • Paulk, A.C., Gronenberg, W. (2008) Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. Arthropod Struct. Dev. 37, 443–458

    Article  PubMed  Google Scholar 

  • Paulk, A.C., Phillips-Portillo, J., Dacks, A., Fellous, J.-M., Gronenberg, W. (2008) The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J. Neurosci. 28, 6319–6332

    Article  PubMed  CAS  Google Scholar 

  • Paulk, A.C., Dacks, A.M., Gronenberg, W. (2009a) Color processing in the medulla of the bumblebee (Apidae: Bombus impatiens). J. Comp. Neurol. 513, 441–456

    Article  PubMed  Google Scholar 

  • Paulk, A.C., Dacks, A.M., Phillips-Portillo, J., Fellous, J.-M., Gronenberg, W. (2009b) Visual processing in the central bee brain. J. Neurosci. 29, 9987–9999

    Article  PubMed  CAS  Google Scholar 

  • Pearce, J.M. (1987) A model for stimulus generalization in Pavlovian conditioning. Psychol. Rev. 94, 61–73

    Article  PubMed  CAS  Google Scholar 

  • Peitsch, D., Fietz, A., Hertel, H., Souza, J., Ventura, D.F., et al. (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J. Comp. Physiol. A 170, 23–40

    Article  PubMed  CAS  Google Scholar 

  • Ribi, W.A. (1975a) The first optic ganglion of the bee. I. Correlation between visual cell types and their terminals in the lamina and medulla. Cell Tissue Res. 165, 103–111

    Article  PubMed  CAS  Google Scholar 

  • Ribi, W.A. (1975b) The neurons of the first optic ganglion of the bee (Apis mellifera). Adv. Anat. Embryol. Cell Biol. 50, 1–43

    PubMed  CAS  Google Scholar 

  • Ribi, W.A., Scheel, M. (1981) The second and third optic ganglia of the worker bee: Golgi studies of the neuronal elements in the medulla and lobula. Cell Tissue Res. 221, 17–43

    Article  PubMed  CAS  Google Scholar 

  • Riehle, A. (1981) Color opponent neurons of the honey bee in a heterochromatic flicker test. J. Comp. Physiol. A 142, 81–88

    Article  Google Scholar 

  • Rind, F.C. (2004) Bioinspired sensors: From insect eyes to robot vision. In: Christensen, T. A. (ed.) Methods in Insect Sensory Neurosciences. CRC, Boca Raton.

  • Rossel, S., Wehner, R. (1984) How bees analyse the polarization patterns in the sky. Experiments and model. J. Comp. Physiol. A 154, 607–615

    Article  Google Scholar 

  • Rossel, S., Wehner, R. (1986) Polarization vision in bees. Nature 323, 128–131

    Article  Google Scholar 

  • Roussel, E., Sandoz, J.C., Giurfa, M. (2010) Searching for learning-dependent changes in the antennal lobe: simultaneous recording of neural activity and aversive olfactory learning in honey bees. Front. Behav. Neurosci. 4, 1–12

    Google Scholar 

  • Rybak, J., Menzel, R. (1993) Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. J. Comp. Neurol. 334, 444–465

    Article  PubMed  CAS  Google Scholar 

  • Sandoz, J.C., Galizia, C.G., Menzel, R. (2003) Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honey bee antennal lobes. Neurosci. 120, 1137–1148

    Article  CAS  Google Scholar 

  • Shepard, R.N. (1987) Toward a universal law of generalization for psychological science. Science 237, 1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Skorupski, P., Chittka, L. (2010) Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris. J. Neurosci. 30, 3896–3903

    Article  PubMed  CAS  Google Scholar 

  • Spaethe, J., Briscoe, A.D. (2004) Early duplication and functional diversification of the opsin gene family in insects. Mol. Biol. Evol. 21, 1583–1594

    Article  PubMed  CAS  Google Scholar 

  • Spaethe, J., Briscoe, A.D. (2005) Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. J. Exp. Biol. 208, 2347–2361

    Article  PubMed  CAS  Google Scholar 

  • Spence, K.W. (1937) The differential response in animals to stimuli varying within a single dimension. Psychol. Rev. 44, 430–444

    Article  Google Scholar 

  • Srinivasan, M.V. (1994) Pattern recognition in the honey bee: recent progress. J. Insect Physiol. 40, 183–194

    Article  Google Scholar 

  • Srinivasan, M.V. (2006) Honey bee vision: in good shape for shape recognition. Curr. Biol. 16, R58–R60

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, M.V. (2011) Honey bees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol. Rev. 91, 413–460

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, M.V., Lehrer, M. (1984) Temporal acuity of honey bee vision: behavioural studies using moving stimuli. J. Comp. Physiol. A 155, 297–312

    Article  Google Scholar 

  • Srinivasan, M.V., Lehrer, M. (1985) Temporal resolution of colour vision in the honey bee. J. Comp. Physiol. A 157, 579–586

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, M.V., Lehrer, M. (1988) Spatial acuity of honeybee vision, and its spectral properties. J. Comp. Physiol. A 162, 159–72

    Article  Google Scholar 

  • Stach, S., Benard, J., Giurfa, M. (2004) Local-feature assembling in visual pattern recognition and generalization in honey bees. Nature 429, 758–61

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld, N.J., Okamura, J.Y. (2007) Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. J. Comp. Neurol. 500, 166–188

    Article  PubMed  Google Scholar 

  • Strausfeld, N.J., Sinakevitch, I., Okamura, J.Y. (2007) Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Dev. Neurobiol. 67, 1267–1288

    Article  PubMed  Google Scholar 

  • Takeda, K. (1961) Classical conditioned response in the honey bee. J. Insect Physiol. 6, 168–179

    Article  CAS  Google Scholar 

  • Thompson, R. K. R. (1995) Natural and relational concepts in animals. In: Roitblat, H., Meyer, J. A. (eds.) Comparative Approaches to Cognitive Science. MIT, Cambridge.

  • van Hateren, J.H., Srinivasan, M.V., Wait, P.B. (1990) Pattern recognition in bees: orientation discrimination. J. Comp. Physiol. A 167, 649–654

    Article  Google Scholar 

  • Velarde, R.A., Sauer, C.D., Walden, K.O., Fahrbach, S.E., Robertson, H.M. (2005) Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem. Mol. Biol. 35, 1367–1377

    Article  PubMed  CAS  Google Scholar 

  • Vergoz, V., Roussel, E., Sandoz, J.C., Giurfa, M. (2007) Aversive learning in honey bees revealed by the olfactory conditioning of the sting extension reflex. PLoS ONE 2, e288

    Article  PubMed  Google Scholar 

  • von Frisch, K. (1914) Der Farbensinn und Formensinn der Bienen. Z. Jhb. Physiol. 37, 1–128

    Google Scholar 

  • von Frisch, K. (1967) The Dance Language and Orientation of Bees. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Vorobyev, M., Osorio, D. (1998) Receptor noise as a determinant of colour thresholds. Proc. Biol. Sci. 265, 351–358

    Article  PubMed  CAS  Google Scholar 

  • Vorobyev, M., Gumbert, A., Kunze, J., Giurfa, M., Menzel, R. (2001) Colour threshold and receptor noise: behaviour and physiology compared. Vision Res. 41, 639–653

    Article  PubMed  CAS  Google Scholar 

  • Wakakuwa, M., Kurasawa, M., Giurfa, M., Arikawa, K. (2005) Spectral heterogeneity of honey bee ommatidia. Naturwissenschaften 92, 464–467

    Article  PubMed  CAS  Google Scholar 

  • Waterman, T.H. (1981) Polarization sensitivity. In: Autrum, H. (ed.) Handbook of Sensory Physiology VII/6B, pp. 281–469. Springer, Berlin

    Google Scholar 

  • Wehner, R. (1967) Pattern recognition in bees. Nature 215, 1244–1249

    Article  PubMed  CAS  Google Scholar 

  • Wehner, R. (1971) The generalization of directional visual stimuli in the honey bee. Apis mellifera. J. Insect Physiol. 17, 1579–1591

    Article  Google Scholar 

  • Wehner, R., Strasser, S. (1985) The POL area of the honey bee’s eye: behavioural evidence. Physiol. Entomol. 10, 337–349

    Article  Google Scholar 

  • Werner, A., Menzel, R., Wehrhahn, C. (1988) Color constancy in the honey bee. J. Neurosci. 8, 156–159

    PubMed  CAS  Google Scholar 

  • White, R.H., Xu, H., Münch, T.A., Bennett, R.R., Grable, E.A. (2003) The retina of Manduca sexta: rhodopsin-expression, the mosaic of green-, blue-, and UV-sensitive photoreceptors and regional specialization. J. Exp. Biol. 206, 3337–3348

    Article  PubMed  CAS  Google Scholar 

  • Wolf, R., Heisenberg, M. (1991) Basic organization of operant behavior as revealed in Drosophila flight orientation. J. Comp. Physiol. A 169, 699–705

    Article  PubMed  CAS  Google Scholar 

  • Yang, E.C., Lin, H.C., Hung, Y.S. (2004) Patterns of chromatic information processing in the lobula of the honey bee. Apis mellifera L. J. Insect Physiol. 50, 913–925

    Article  CAS  Google Scholar 

  • Zayan, R., Vauclair, J. (1998) Categories as paradigms for comparative cognition. Behav. Process. 42, 87–99

    Article  Google Scholar 

  • Zentall, T.R., Galizio, M., Critchfied, T.S. (2002) Categorization, concept learning, and behavior analysis: an introduction. J. Exp. Analys. Behav. 78, 237–248

    Article  Google Scholar 

  • Zentall, T.R., Wasserman, E.A., Lazareva, O.F., Thompson, R.K.R., Rattermann, M.J. (2008) Concept learning in animals. Comp. Cogn. Behav. Rev. 3, 13–45

    Google Scholar 

  • Zhang, S.W., Srinivasan, M.V., Collett, T. (1995) Convergent processing in Honey bee vision: multiple channels for the recognition of shape. Proc. Natl. Acad. Sci. USA 92, 3029–3031

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Srinivasan, M.V., Zhu, H., Wong, J. (2004) Grouping of visual objects by honey bees. J. Exp. Biol. 207, 3289–3298

    Article  PubMed  Google Scholar 

  • Zhang, S., Bock, F., Si, A., Tautz, J., Srinivasan, M.V. (2005) Visual working memory in decision making by honey bees. Proc. Natl. Acad. Sci. USA 102, 5250–5255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers and A. Dyer (Melbourne, Australia) for productive collaboration in the field of this review. We also thank the French Research Council (CNRS), the University Paul Sabatier (Project APIGENE), and the National Research Agency (ANR: Project Apicolor) for generous support. A. Avarguès-Weber was supported by the French ministry of Research and T. Mota by a doctoral scholarship from the CAPES Foundation and the Brazilian government. M. Giurfa thanks the Program Raíces of the Argentinean Research Ministry for a Milstein Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Giurfa.

Additional information

Manuscript editor: Bernd Grünewald

Nouvelles perspectives sur la vision de l’abeille

Vision / sens de la vue / cognition visuelle / abeille / Apis mellifera / Insecta

Neue Blicke auf den Gesichtssinn der Bienen

Sehen / Gesichtssinn / visuelle Wahrnehmung / visuelle Kognition / Honigbiene / Apis mellifera / Insekt / wirbelloses Tier

Aurore Avarguès-Weber and Theo Mota contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avarguès-Weber, A., Mota, T. & Giurfa, M. New vistas on honey bee vision. Apidologie 43, 244–268 (2012). https://doi.org/10.1007/s13592-012-0124-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0124-2

Keywords

Navigation