Skip to main content
Log in

Phytoremediation of volatile organic compounds by indoor plants: a review

  • Review Article
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Air quality in homes, offices, and other indoor spaces has become a major health, economic, and social concern. A plant-based removal system for volatile organic compounds (VOCs) appears to be a low-cost, environment-friendly solution for improving indoor air quality. This review presents and assesses VOC removal mechanisms that use plants and their associated microorganisms as well as the factors that influence the rate and efficiency of VOC removal. To increase removal efficiency, it is important to have a thorough understanding of the mechanisms of VOC degradation by plants and their associated microorganisms. The potential of plants and their associated microorganisms, whether present in pots or forced-air systems, to remove VOCs from indoor environments have been supported by a number of studies. Variations in removal efficiency depend on the plant species used, the chemical properties of the volatiles in question, and a cross-section of other internal and external factors. It is thus critical to select the right plants and use methods that reflect in vivo conditions. Indoor plants with superior air-purifying abilities have been extensively studied; however, the low rates of VOC removal efficiency in interior environments entail the need of more studies. For instance, factors that modulate VOC removal by plants, such as air circulation rate, light intensity, moisture status, and season need to be explored. Improving the efficiency of plants and their associated microorganisms for VOC remediation of indoor air is necessary to ensure sustainable and healthy indoor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achkor H, Díaz M, Fernández MR, Biosca JA, Parés X, Martínez MC (2003) Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol 132:2248–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrew James C, Gang XIN, Doty SL, Strand SE (2008) Degradation of low molecular weight volatile organic compounds by plants genetically modified with mammalian cytochrome P450 2E1. Environ Sci Technol 42:289–293

    Article  PubMed  CAS  Google Scholar 

  • Aydogan A, Montoya LD (2011) Formaldehyde removal by common indoor plant species and various growing media. Atmos Environ 45:2675–2682

    Article  CAS  Google Scholar 

  • Butkovich K, Graves J, Mckay J, Slopack M (2008) An investigation into the feasibility of biowall technology. George Brown College Applied Research and Innovation, Toronto, Canada

  • Cape JN (2003) Effects of airborne volatile organic compounds on plants. Environ Pollut 122:145–157

    Article  CAS  PubMed  Google Scholar 

  • Cape JN, Binnie J, Mackie N, Skiba UM (2000) Uptake of volatile compounds by grass. In: Proceedings of the 3rd SETAC World Congress, Brighton, U.K.

  • Chen L, Yurimoto H, Li K, Orita I, Akita M, Kato N, Sakai Y, Izui K (2010) Assimilation of formaldehyde in transgenic plants due to the introduction of the bacterial ribulose monophosphate pathway genes. Biosci Biotechnol Biochem 74:627–635

    Article  CAS  PubMed  Google Scholar 

  • Chun S-C, Yoo MH, Moon YS, Shin MH, Son K-C, Chung I-M, Kays SJ (2010) Effect of bacterial population from rhizosphere of various foliage plants on removal of indoor volatile organic compounds. Korean J Hortic Sci Technol 28:476–483

    CAS  Google Scholar 

  • Collins CD, Bell JNB, Crews C (2000) Benzene accumulation in horticultural crops. Chemosphere 40:109–114

    Article  CAS  PubMed  Google Scholar 

  • Collins JJ, Ireland B, Buckley CF, Shepperly D (2003) Lymphohaematopoeitic cancer mortality among workers with benzene exposure. Occup Environ Med 60:676–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornejo JJ, Muñoz FG, Ma CY, Stewart AJ (1999) Studies on the decontamination of air by plants. Ecotoxicology 8:311–320

    Article  CAS  Google Scholar 

  • Daisey JM, Hodgon AT, Fisk WJ, Mendell MJ, Ten BJ (1994) Volatile organic compounds in twelve Californian office buildings: classes, concentrations and sources. Atmos Environ 28:3557–3562

    Article  CAS  Google Scholar 

  • Dela Cruz M, Christensen JH, Thomsen JD, Müller R (2014a) Can ornamental potted plants remove volatile organic compounds from indoor air?—a review. Environ Sci Pollut Res 21:13909–13928

    Article  CAS  Google Scholar 

  • Dela Cruz M, Müller R, Svensmark B, Pedersen JS, Christensen JH (2014b) Assessment of volatile organic compound removal by indoor plants—a novel experimental setup. Environ Sci Pollut Res 21:7838–7846

    Article  CAS  Google Scholar 

  • Delhoménie M-C, Heitz M (2005) Biofiltration of air: a review. Crit Rev Biotechnol 25:53–72

    Article  PubMed  CAS  Google Scholar 

  • Erdmann C, Apte MG (2003) Association of carbon dioxide concentrations and environmental susceptibilities with mucus membrane and lower respiratory building-related symptoms in the BASE study: analyses of the 100 building dataset. Indoor Air. Special Edition, September

  • Giese M, Bauer-Doranth U, Langebartels C, Sandermann H (1994) Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol 104:1301–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godish T, Guindon C (1989) An assessment of botanical air purification as a formaldehyde mitigation measure under dynamic laboratory chamber conditions. Environ Pollut 62:13–20

    Article  CAS  PubMed  Google Scholar 

  • Greipsson S (2011) Phytoremediation. Nat Educ Knowl 3(10):7

    Google Scholar 

  • Guieysse B, Hort C, Platel V, Munoz R, Ondarts M, Revah S (2008) Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnol Adv 26:398–410

    Article  CAS  PubMed  Google Scholar 

  • Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Biol 52:119–137

    Article  CAS  Google Scholar 

  • Huang W-H, Wang Z, Choudhary G, Guo B, Zhang J, Ren D (2012) Characterization of microbial species in a regenerative bio-filter system for volatile organic compound removal. HVAC&R Res 18:169–178

    Google Scholar 

  • Huang Y, Ho SSH, Niu R, Xu L, Lu Y, Cao J, Lee S (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21:56. https://doi.org/10.3390/molecules21010056

    Article  PubMed  CAS  Google Scholar 

  • Husti A, Cantor M, Stefan R, Miclean M, Roman M, Neacsu I, Contiu I, Magyari K, Baia M (2016) Assessing the indoor pollutants effect on ornamental plants leaves by FT-IR spectroscopy. Acta Phys Pol A 129:142–149

    Article  CAS  Google Scholar 

  • Ijaz A, Imran A, ul Haq MA, Khan QM, Afzal M (2016) Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 405:179–195. https://doi.org/10.1007/s11104-015-2606-2

    Article  CAS  Google Scholar 

  • Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Jindrova E, Chocova M, Demnerova K, Brenner V (2002) Bacterial aerobic degradation of benzene, toluene, ethylbenzene, and xylene. Folia Microbiol 47:83–93

    Article  CAS  Google Scholar 

  • Jones AP (1999) Indoor air quality and health. Atmos Environ 33:4535–4564

    Article  CAS  Google Scholar 

  • Khaksar G, Treesubsuntorn C, Thiravetyan P (2016a) Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: potentials and challenges for airborne formaldehyde removal. Plant Physiol Biochem 107:326–336

    Article  CAS  PubMed  Google Scholar 

  • Khaksar G, Treesubsuntorn C, Thiravetyan P (2016b) Endophytic Bacillus cereus ERBP—Clitoria ternatea interactions: potentials for the enhancement of gaseous formaldehyde removal. Environ Exp Bot 126:10–20

    Article  CAS  Google Scholar 

  • Kim HJ (2016) Effects of airflow and microorganisms in rootzone on phytoremediation of volatile organic compounds by indoor plants. Master’s Thesis, Chonbuk National University, Jeongju, 57 pp (in Korean)

  • Kim KJ, Lee DW (2008) Efficiency of volatile formaldehyde removal of orchids as affected by species and crassulacean acid metabolism (CAM) nature. Hortic Environ Biotechnol 49:132–137

    CAS  Google Scholar 

  • Kim KJ, Yoo EH (2011) Efficiency of formaldehyde removal according to the ground cover plants and materials of indoor potted plants. J Korean Soc People Plants Environ 14:279–283

    Google Scholar 

  • Kim KJ, Kil MJ, Song JS, Yoo EH, Son K-C, Kays SJ (2008) Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. J Am Soc Hortic Sci 133:521–526

    Google Scholar 

  • Kim KJ, Kil MJ, Jeong MI, Kim HD, Yoo EH, Jeong SJ, Pak CH, Son K (2009) Determination of the efficiency of formaldehyde removal according to the percentage volume of pot plants occupying a room. Korean J Hortic Sci Technol 27:305–311

    CAS  Google Scholar 

  • Kim KJ, Jeong MI, Lee DW, Song JS, Kim HD, Yoo EH, Jeong SJ, Han SW, Kays SJ et al (2010) Variation in formaldehyde removal efficiency among indoor plant species. HortScience 45:1489–1495

    Google Scholar 

  • Kim KJ, Yoo EH, Il Jeong M, Song JS, Lee SY, Kays SJ (2011) Changes in the phytoremediation potential of indoor plants with exposure to toluene. HortScience 46:1646–1649

    CAS  Google Scholar 

  • Kim KJ, Yoo EH, Kays SJ (2012) Decay kinetics of toluene phytoremediation stimulation. HortScience 47:1195–1198

    CAS  Google Scholar 

  • Kim KJ, Jung HH, Lee JA (2013) Physiological response of indoor plants according to formaldehyde concentrations. J Korean Soc People Plants Environ 16:421–425

    Article  CAS  Google Scholar 

  • Kim KJ, Jung HH, Seo HW, Lee JA, Kays SJ (2014) Volatile toluene and xylene removal efficiency of foliage plants as affected by top to root zone size. HortScience 49:230–234

    CAS  Google Scholar 

  • Kim KJ, Kim HJ, Khalekuzzaman M, Yoo EH, Jung HH, Jang HS (2016) Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants. Environ Sci Pollut Res 23:6149–6158

    Article  CAS  Google Scholar 

  • Kleipeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252

    Article  CAS  Google Scholar 

  • Kobayashi KD, Kaufman AJ, Griffis J, McConnell J (2007) Using houseplants to clean indoor air. Cooperative Extension Service, College of Tropical Agriculture and Human Resources. University of Hawai’i at Manoa, Ornamentals and Flowers, OF-39

  • Koppmann R (2007) Volatile organic compounds in the atmosphere. Blackwell Publishing Ltd., Hoboken. https://doi.org/10.1002/9780470988657

    Book  Google Scholar 

  • Korte F, Kvesitadze G, Ugrekhelidze D, Gordeziani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F (2000) Organic toxicants and plants. Ecotoxicol Environ Saf 47:1–26

    Article  CAS  PubMed  Google Scholar 

  • Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden JJ (2006) Biochemical mechanisms of detoxification in higher plants. Springer, Berlin, pp 103–132

    Google Scholar 

  • Kvesitadze E, Sadunishvili T, Kvesitadze G (2009) Mechanisms of organic contaminants uptake and degradation in plants. World Acad Sci Eng Technol 3:417–427

    Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439. https://doi.org/10.1007/s12257-013-0193-8

    Article  CAS  Google Scholar 

  • Li P, Pemberton R, Zheng G (2015) Foliar trichome-aided formaldehyde uptake in the epiphytic Tillandsia velutina and its response to formaldehyde pollution. Chemosphere 119:662–667

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Mu YJ, Zhu YG, Ding H, Crystal Arens N (2007) Which ornamental plant species effectively remove benzene from indoor air? Atmos Environ 41:650–654

    Article  CAS  Google Scholar 

  • Liu G, Xiao M, Zhang X, Gal C, Chen X, Liu L (2017) A review of air filtration technologies for sustainable and healthy building ventilation. Sustain Cities Soc 32:375–396

    Article  Google Scholar 

  • Llewellyn D, Dixon M (2011) Can plants really improve indoor air quality? Compr Biotechnol Second Ed. https://doi.org/10.1016/B978-0-08-088504-9.00325-1

    Article  Google Scholar 

  • Luengas A, Barona A, Hort C, Gallastegui G, Platel V, Elias A (2015) A review of indoor air treatment technologies. Rev Environ Sci Biotechnol 14:499–522

    Article  CAS  Google Scholar 

  • Mosaddegh MH, Jafarian A, Ghasemi A, Mosaddegh A (2014) Phytoremediation of benzene, toluene, ethylbenzene and xylene contaminated air by D. deremensis and O. microdasys plants. J Environ Health Sci 12:39. https://doi.org/10.1186/2052-336x-12-39

    Article  Google Scholar 

  • Nian HJ, Meng QC, Cheng Q, Zhang W, Chen LM (2013) The effects of overexpression of formaldehyde dehydrogenase gene from Brevibacillus brevis on the physiological characteristics of tobacco under formaldehyde stress. Russ J Plant Physiol 60:764–769. https://doi.org/10.1134/S1021443713060083

    Article  CAS  Google Scholar 

  • Niazi NK, Bashir S, Bibi I, Murtaza B, Shahid Md, Javed MdT, Shakoor MdB, Saqib ZA, Nawaz MdF, Aslam Z, Wang H, Murtaza H (2016) Phytoremediation of arsenic-contaminated soils using arsenic hyperaccumulating ferns. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation management of environmental contaminants, vol 3. Springer International Publishing, Basel, pp 521–545

    Google Scholar 

  • Orwell RL, Wood RA, Tarran J, Torpy F, Burchett MD (2004) Removal of benzene by the indoor plant/substrate microcosm and implications for air quality. Water Air Soil Pollut 157:193–207. https://doi.org/10.1023/B:WATE.0000038896.55713.5b

    Article  CAS  Google Scholar 

  • Orwell RL, Wood RA, Burchett MD, Tarran J, Torpy F (2006) The potted-plant microcosm substantially reduces indoor air VOC pollution: II. Laboratory study. Water Air Soil Pollut 177:59–80. https://doi.org/10.1007/s11270-006-9092-3

    Article  CAS  Google Scholar 

  • Oyabu T, Onodera T, Kimura H, Sadaoka Y (2001) Purification ability of interior plant for removing of indoor—air polluting chemicals using a tin oxide gas sensor. J Jpn Soc Atmos Environ 36a:319–325

    Google Scholar 

  • Oyabu T, Sawada A, Onodera T, Takenada K, Wolverton B (2003) Characteristics of potted plants for removing offensive odors. Sens Actuators B 89:131–136

    Article  CAS  Google Scholar 

  • Oyabu T, Sawada A, Kuroda H, Hashimoto T, Yoshioka T (2005) Purification capabilities of golden pothos and peace lily for indoor air pollutants and its application to a relaxation space. J Agric Meterol 60:1145–1148

    Article  Google Scholar 

  • Parales RE, Parales JV, Pelletier DA, Ditty JL (2008) Diversity of microbial toluene degradation pathways. Adv Appl Microbiol 64:1–73

    Article  CAS  PubMed  Google Scholar 

  • Porter JR (1994) Toluene removal from air by Dieffenbachia in a closed environment. Adv Space Res 14:99–103. https://doi.org/10.1016/0273-1177(94)90285-2

    Article  CAS  PubMed  Google Scholar 

  • Sangthong S, Suksabye P, Thiravetyan P (2016) Airborne xylene degradation by Bougainvillea buttiana and the role of epiphytic bacteria in the degradation. Ecotoxicol Environ Saf 126:273–280

    Article  CAS  PubMed  Google Scholar 

  • Sawada A, Oyabu T (2008) Purification characteristics of pothos for airborne chemicals in growing conditions and its evaluation. Atmos Environ 42:594–602

    Article  CAS  Google Scholar 

  • Schmitz H, Hilgers U, Weidner M (2000) Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytol 147:307–315

    Article  CAS  Google Scholar 

  • Snyder R (2012) Leukemia and benzene. Int J Environ Res Public Health 9:2875–2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song ZB, Xiao SQ, You L, Wang SS, Tan H, Li KZ, Chen LM (2013) C1 metabolism and the Calvin cycle function simultaneously and independently during HCHO metabolism and detoxification in Arabidopsis thaliana treated with HCHO solutions. Plant Cell Environ 36:1490–1506

    Article  CAS  PubMed  Google Scholar 

  • Soreanu G, Dixon M, Darlington A (2013) Botanical biofiltration of indoor gaseous pollutants—a mini-review. Chem Eng J 229:585–594

    Article  CAS  Google Scholar 

  • Sriprapat W, Thiravetyan P (2013) Phytoremediation of BTEX from indoor air by Zamioculcas zamiifolia. Water Air Soil Pollut. https://doi.org/10.1007/s11270-013-1482-8

    Article  Google Scholar 

  • Sriprapat W, Thiravetyan P (2016) Efficacy of ornamental plants for benzene removal from contaminated air and water: effect of plant-associated bacteria. Int Biodeterior Biodegrad 113:262–268

    Article  CAS  Google Scholar 

  • Sriprapat W, Boraphech P, Thiravetyan P (2014a) Factors affecting xylene-contaminated air removal by the ornamental plant Zamioculcas zamiifolia. Environ Sci Pollut Res 21:2603–2610

    Article  CAS  Google Scholar 

  • Sriprapat W, Suksabye P, Areephak S, Klantup P, Waraha A, Sawattan A, Thiravetyan P (2014b) Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants. Ecotoxicol Environ Saf 102:147–151

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Liang Y (2015) Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum). J Hazard Mater 291:120–128

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zhang W, Tang L, Han S, Wang X, Zhou S, Li K, Chen L (2015) Investigation of the role of the Calvin cycle and C1 metabolism during HCHO metabolism in gaseous HCHO-treated petunia under light and dark conditions using 13C-NMR. Phytochem Anal 26:226–235

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Kidu Y (2011) Glutathione-dependent formaldehyde dehydrogenase from golden pothos (Epipremnum aureum) and the production of formaldehyde detoxifying plants. Plant Biotechnol 28:373–378

    Article  CAS  Google Scholar 

  • Thomas CK, Kim KJ, Kays SJ (2015) Phytoremediation of indoor air. HortScience 50:765–768

    CAS  Google Scholar 

  • Toabaita M, Vangnai AS, Thiravetyan P (2016) Removal of ethylbenzene from contaminated air by Zamioculcas zamiifolia and microorganisms associated on Z. zamiifolia leaves. Water Air Soil Pollut 227:115. https://doi.org/10.1007/s11270-016-2817-z

    Article  CAS  Google Scholar 

  • Treesubsuntorn C, Thiravetyan P (2012) Removal of benzene from indoor air by Dracaena sanderiana: effect of wax and stomata. Atmos Environ 57:317–321

    Article  CAS  Google Scholar 

  • Treesubsuntorn C, Suksabye P, Weangjun S, Pawana F, Thiravetyan P (2013) Benzene adsorption by plant leaf materials: effect of quantity and composition of wax. Water Air Soil Pollut 224:1736. https://doi.org/10.1007/s11270-013-1736-5

    Article  CAS  Google Scholar 

  • Tsai DH, Lin JS, Chan CC (2012) Office workers sick building syndrome and indoor carbon dioxide concentrations. J Occup Environ Hyg 9:345–351

    Article  CAS  PubMed  Google Scholar 

  • Ugrekhelidze D, Korte F, Kvesitadze G (1997) Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol Environ Saf 37:24–29

    Article  CAS  PubMed  Google Scholar 

  • U.S. EPA (2017) Volatile organic compounds—impact on indoor air quality. https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality. Accessed 21 June 2017

  • van Haut H, Prinz B (1979) Beurteilung der relativen Pflanzenscha¨—dlichkeit organischer Luftverunreinigungen im LIS-Kurzzeittest. Staub-Reinhaltung der Luft 39:408–414

    Google Scholar 

  • Wallace LA (2001) Human exposure to volatile organic pollutant: implications for indoor air studies. Annu Rev Energy Environ 26:269–301

    Article  Google Scholar 

  • Wang Z, Pei J, Zhang JS (2012) Modeling and simulation of an activated carbon-based botanical air filtration system for improving indoor air quality. Build Environ 54:109–115

    Article  Google Scholar 

  • Wang Z, Pei J, Zhang JS (2014) Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification. J Hazard Mater 280:235–243

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zeng Z, Liu T, Liu A, Zhao Y, Li K, Chen L (2016) A novel formaldehyde metabolic pathway plays an important role during formaldehyde metabolism and detoxification in tobacco leaves under liquid formaldehyde stress. Plant Physiol Biochem 105:233–241

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Lyu S, Yu Y, Wang Z, Liu H, Pan D, Chen J (2017) Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci 8:1–23

    Google Scholar 

  • Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Environ 43:153–169

    Article  CAS  Google Scholar 

  • Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant-microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16:25576–25604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2014) Burden of disease from household air pollution for 2012. http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf. Accessed 23 June 2017

  • Wieslander G, Norback D, Bjornsson E, Janson C, Boman G (1997) Asthma and indoor environment: the significance of emission of formaldehyde and volatile organic compounds from the newly painted indoor surfaces. Int Arch Occup Environ Health 69:115–124

    Article  CAS  PubMed  Google Scholar 

  • Wolverton BC (1996) How to grow fresh air 50 houseplants that purify your home or office. Penguin Books, New York, p 27

    Google Scholar 

  • Wolverton BC, McDonald RC (1982) Foliage plants for removing formaldehyde from contaminated air inside energy-efficient homes and future space stations. (TM-84674 NSTL 39529) NASA National Space Technology Labs, Bay St. Louis, Mississippi, USA

  • Wolverton B, Wolverton J (1993) Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J Miss Acad Sci 38:11–15

    Google Scholar 

  • Wolverton BC, Mcdonald RC, Watkins EA (1984) Foliage plants for removing indoor air pollutants from energy-efficient homes. Econ Bot 38:224–228

    Article  CAS  Google Scholar 

  • Wolverton B, Jhonson A, Bounds K (1989) Interior landscape plants for indoor air pollution abatement. National Aeronautics and Space Administration, NASA, pp 1–30

  • Wood RA, Orwell RL, Tarran J, Torpy F, Burchett M (2002) Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air. J Hortic Sci Biotechnol 77:120–129. https://doi.org/10.1080/14620316.2002.11511467

    Article  CAS  Google Scholar 

  • Xiao SQ, Sun Z, Wang SS, Zhang J, Li KZ, Chen LM (2012) Overexpressions of dihydroxyacetone synthase and dihydroxyacetone kinase in chloroplasts install a novel photosynthetic HCHO-assimilation pathway in transgenic tobacco using modified Gateway entry vectors. Acta Physiol Plant 34:1975–1985. https://doi.org/10.1007/s11738-012-0998-7

    Article  CAS  Google Scholar 

  • Xu Z, Qin N, Wang J, Tong H (2010) Formaldehyde biofiltration as affected by spider plant. Bioresour Technol 101:6930–6934

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wang L, Hou H (2011) Formaldehyde removal by potted plant–soil systems. J Hazard Mater 192:314–318

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    Article  CAS  PubMed  Google Scholar 

  • Yang DS, Pennisi SV, Son K-C, Kays SJ (2009) Screening indoor plants for volatile organic pollutant removal efficiency. HortScience 44:1377–1381

    Google Scholar 

  • Yoo MH, Kwon YJ, Son K, Kays SJ (2006) Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. J Am Soc Hortic Sci 131:452–458

    CAS  Google Scholar 

  • Yu C, Crump DA (1998) A review of emission of VOCs from polymeric materials used in buildings. Build Environ 33:357–374

    Article  Google Scholar 

  • Yu DS, Song G, Song LL, Wang W, Guo CH (2015) Formaldehyde degradation by a newly isolated fungus Aspergillus sp. HUA. Int J Environ Sci Technol 12:247–254

    Article  CAS  Google Scholar 

  • Zhang H, Pennisi SV, Kays SJ, Habteselassie MY (2013) Isolation and identification of toluene-metabolizing bacteria from rhizospheres of two indoor plants. Water Air Soil Pollut 224:1648. https://doi.org/10.1007/s11270-013-1648-4

    Article  CAS  Google Scholar 

  • Zhang W, Tang L, Sun H, Han S, Wang X, Zhou S, Li K, Chen L (2014) C1 metabolism plays an important role during formaldehyde metabolism and detoxification in petunia under liquid HCHO stress. Plant Physiol Biochem 83:327–336

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Xiao S, Xuan X, Sun Z, Li K, Chen L (2015) Simultaneous functions of the installed DAS/DAK formaldehyde-assimilation pathway and the original formaldehyde metabolic pathways enhance the ability of transgenic geranium to purify gaseous formaldehyde polluted environment. Plant Physiol Biochem 89:53–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01221501), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.J., Khalekuzzaman, M., Suh, J.N. et al. Phytoremediation of volatile organic compounds by indoor plants: a review. Hortic. Environ. Biotechnol. 59, 143–157 (2018). https://doi.org/10.1007/s13580-018-0032-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-018-0032-0

Keywords

Navigation