Skip to main content
Log in

Effects of drought stress on the antioxidant systems in three species of Diospyros L.

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Drought stress is a limiting factor for plant cultivation in many areas of China and persimmon has good capacity to withstand water shortage. Three species of Diospyros (three accession of Diospyros lotus, referred to as accession No. 824, 846, and 847; one accession of Diospyros kaki var. sylvestris referred to as 869; and one accession of Diospyros virginiana referred to as 844) were chosen for drought stress analysis. We withheld water from healthy two-year-old potted seedlings for 20 days, and compared the effects of water stress on malondialdehyde (MDA), superoxide free radical (O2 .-), hydrogen peroxide (H2O2), antioxidative enzyme, glutathione (GSH), and ascorbic acid (AsA) levels in the leaves of the three species. In the treatment group, water stress increased the membrane lipid peroxidation in the three species, but a more significant increase was observed in the D. kaki var. sylvestris 869 than in the D. virginiana 844. Moreover, accumulation of O2 .- and H2O2 was faster in weakly drought-resistant hybrids than in the highly drought- resistant hybrids. Though the activities of antioxidant enzymes and antioxidant contents were increased in the three species under drought stress, the activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase were stimulated to a greater extent in D. virginiana 844 than in D. lotus and D. kaki var. sylvestris 869. In addition, the GSH, AsA, and relative water contents were increased significantly in D. virginiana 844, but not in D. kaki var. sylvestris 869. In the control group, no significant changes in lipid peroxidation and relevant antioxidant parameters were detected among the three species. These results indicated that changes of MDA, O2 .-, and H2O2 content, antioxidative enzyme activities, and GSH and AsA concentrations were correlated to drought resistance in the different species. D. virginiana 844 had a higher antioxidation capacity in response to drought than the other two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24:1337–1344.

    Article  CAS  Google Scholar 

  • Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373–399.

    Article  CAS  PubMed  Google Scholar 

  • Barrs, H.D. and P.E. Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15:413–428.

    Google Scholar 

  • Becana, M., M.A. Matamoros, M. Udvardi, and D.A. Dalton. 2010. Recent insights into antioxidant defenses of legume root nodules. New Phytol. 188:960–976.

    Article  CAS  PubMed  Google Scholar 

  • Boussadia, O., F.B. Mariem, B. Mechri, W. Boussetta, M. Braham, and S.B.E. Hadj. 2008. Response to drought of two olive tree cultivars (cv Koroneki and Meski). Sci. Hortic. 116:388–393.

    Article  Google Scholar 

  • Bowler, C., M.V. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83–116.

    Article  CAS  Google Scholar 

  • Breusegem, F., M. Van Montagu, and D. Van Inze. 1998. Engineering stress tolerance in maize. Outlook on Agric. 27:115–124.

    Google Scholar 

  • Candan, N. and L. Tarhan. 2003. The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Sci. 163:769–779.

    Article  Google Scholar 

  • Castillo, F.J. 1996. Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107:469–477.

    Article  Google Scholar 

  • Chen, X.N., J.F. Fan, X. Yue, X.R. Wu, and L.T. Li. 2008. Radical scavenging activity and phenolic compounds in persimmon (Diospyros kaki L. cv. Mopan). J. Food Sci. 73:24–28.

    Article  Google Scholar 

  • DaCosta, M. and B. Huang. 2007. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. J. Am. Soc. Hortic. Sci. 132:19–326.

    Google Scholar 

  • Esfandiari, E.O., M.R. Shakiba, S.A. Mahboob, H. Alyari, and M. Toorchi. 2007. Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. J. Food Agric. Environ. 5:149–153.

    CAS  Google Scholar 

  • Fazeli, F., M. Ghorbanli, and V. Niknam. 2007. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol. Plant. 51:98–103.

    Article  CAS  Google Scholar 

  • Foyer, C.H. and S. Shigeoka, 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 155:93–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao, J.F. 2000. Plant physiology laboratory technology. World Books Press, Xi’an, China. p. 101–199.

    Google Scholar 

  • George, A.P., and S. Redpath. 2008. Health and medicinal bene-ts of persimmon fruit: a review. Adv. Hortic. Sci. 22:244–249.

    Google Scholar 

  • Gomes, F.P., M.A. Oliva, M.S. Mielkea, A.F. Almeida, and L.A. Aquino. 2010. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Sci. Hortic. 126:379–384.

    Article  CAS  Google Scholar 

  • Gupta, A.S., R.P. Webb, A.S. Holaday, and R.D. Allen. 1993. Over expression of superoxide dismutase protects plants from oxidative stress. Plant Physiol. 103:1067–1073.

    PubMed Central  PubMed  Google Scholar 

  • Halliwell B. 2009. The wanderings of a free radical. Free Radic Biol Med. 46:531–542.

    Article  CAS  PubMed  Google Scholar 

  • Hayano-Kanashiro, C.C., E. Calderon-Vazquez, L. Ibarra-Laclette, and J.S. Herrera-Estrella. 2009. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One. 4:7531.

    Article  Google Scholar 

  • Huang, B. and Fu, J. 2001. Growth and physiological response of tall fescue to surface soil drying. Int. Turfgrass Soc. Res. J. 9:291–296.

    Google Scholar 

  • Khan, N.A. and S.G. Sarvajeet. 2008. Abiotic stress and plant responses, IK International, New Delhi.

    Google Scholar 

  • Li, Y., C. Sun, Z. Huang, J. Pan, L. Wang, and X. Fan. 2009. Mechanisms of progressive water de-cit tolerance and growth recovery of Chinese maize foundation genotypes Huangzao 4 and Chang 7-2, which are proposed on the basis of comparison of physiological and transcriptomic responses. Plant Cell Physiol. 50: 2092–2111.

    Article  CAS  PubMed  Google Scholar 

  • Lima, A.L.S., F.M. DaMatta, H.A. Pinheiro, M. R. Totola, and M.E. Loureiro. 2002. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ. Exp. Bot. 47:239–247.

    Article  CAS  Google Scholar 

  • Lu, S.Y., Y.C. Li, Z.F. Guo, B.S. Li, and M.Q. Li. 1999. Enhancement of drought resistance of rice seedlings by calcium. Chinese J. Rice Sci. 13:161–164.

    Google Scholar 

  • Ma, Y.H., F.W. Ma, J.K. Zhang, M.J. Li, Y.H. Wang, and D. Liang. 2008. Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Sci. 157:761–766.

    Article  Google Scholar 

  • Miller, G., N. Suzuki, Y.S. Ciftcie, and R. Mittler. 2010. Reactive oxygen species homeostasis andsignalling during drought and salinity stresses. Plant Cell Environ. 33:453–467.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., S. Van der Auwera, M. Gollery, and F.B. Van. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490–498.

    Article  CAS  PubMed  Google Scholar 

  • Moran, J.F., M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R.V. Klucas, and P. Aparicio-Tejo. 1994. Drought induces oxidative stress in pea plants. Planta 194:346–352.

    Article  CAS  Google Scholar 

  • Munné-Bosch, S., T. Jubany-Marí, and L. Alegre. 2001. Droughtinduced senescence is characterized by a loss of antioxidant defenses in chloroplasts. Plant Cell Environ. 24:1319–1327.

    Article  Google Scholar 

  • Nakano, K. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.

    CAS  Google Scholar 

  • Nauseef, W.M. 2008. Nox enzymes in immune cells. Semin. Immunol. 30:330–363.

    Google Scholar 

  • Patterson, B.D., E.A. MacRae, and I.B. Ferguson. 1984. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal. Biochem. 139:487–492.

    Article  CAS  PubMed  Google Scholar 

  • Rampino, P., S. Pataleo, C. Gerardi, G. Mita, and C. Perrotta. 2006. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ. 29:2143–2152.

    Article  CAS  PubMed  Google Scholar 

  • Sairam, R.K., G.C. Srivastava, S. Agarwal, and R.C. Meena. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant. 49:85–91.

    Article  CAS  Google Scholar 

  • Sánchez-Rodríguez, E.M., M. Rubio-Wilhelmi, B. Blasco, R. Leyva, L. Romero, and J.M. Ruiz. 2012. Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Sci. 188–189:89–96.

    Article  PubMed  Google Scholar 

  • Sánchez-Rodríguez, E.M., M. Rubio-Wilhelmi, L.M. Cervilla, B. Blasco, J.J. Rios, M. A. Rosales, L. Romero, and J.M. Ruiz. 2010. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci. 178:30–40.

    Article  Google Scholar 

  • Sarvajeet S.G. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909–930.

    Article  Google Scholar 

  • Sarvajeet S.G., N.A. Khan, N.A. Anjum, and N. Tuteja. 2011. Amelioration of cadmium stress in crop plants by nutrients management: Morphological, physiological and biochemical aspects. Plant Stress 5:1–23.

    Google Scholar 

  • Tanaka K., Y. Suda, and N. Kondo. 1985. Ozone tolerance and the ascorbate dependent hydrogen peroxide decomposing system in chloroplasts. Plant Cell Physiol. 26:1425–1431.

    CAS  Google Scholar 

  • Tanaka, K., au]Masuda, R., au]Sugimoto, T., au]Omasa, K., and Sakaki, T. 1990. Water deficiency-induced changes in the contents of defensive substances against active oxygen in spinach leaves. Agric. Biol. Chem. 54:2634–2639.

    Google Scholar 

  • Tao, R. and A. Sugiura. 1992. Micropropagation of Japanese persimmon (Diospyros kaki L.), p. 424–440. In: Y.P.S. Bajaj (ed.). Biotechnology in agriculture and forestry, Vol. 18: High-tech and micropropagation II. Springer Verlag, Berlin.

    Article  Google Scholar 

  • Teulat, B., N. Zoumarou-Wallis, B. Rotter, M. Ben Salem, H. Bahri, and D. This. 2003. QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor. Appl. Genet. 108:181–188.

    Article  CAS  PubMed  Google Scholar 

  • Turkan, I., M. Bor, F.O. Zdemir, and H. Koca. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168:223–231.

    Article  Google Scholar 

  • Tuteja, N. 2010. Cold, salt and drought stress in plant stress Biology: from genomics towards system biology. Wiley-Blackwell, Weinheim, Germany. p. 137–159.

    Google Scholar 

  • Wang, S.C., D. Liang, C. Li, Y. Hao, F. Ma, and H. Shu. 2012. Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiol. Biochem. 51:81–89.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, L., R.G. Wang, G. Mao, and J.M. Koczan. 2006. Identi-cation of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol. 142: 1065–1074.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yao, Y.C., au]Qu, Z.Z., Li, S.R. 1993. Relations between soil drought, membrane lipid and lipid peroxidation in leaves of young persimmon tree. Sci. Silvae Sin. 29: 485–491.

    Google Scholar 

  • Yoshimura, K., A. Masuda, M. Kuwano, A. Yokota, and Akashi, K. 2008. Programmed proteome response for drought avoidance/ tolerance in the root of a C3 xerophyte (wild watermelon) under water de-cits. Plant Cell Physiol. 49:226–241.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. and Kirkham, M.B. 1996. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 132:361–373.

    Article  CAS  Google Scholar 

  • Zhang, J., Y.C. Yao, J.G. Streeter, and D.C. Ferree. 2010. Influence of soil drought stress on photosynthesis, carbohydrates and the nitrogen and phosphorus absorb in different section of leaves and stem of Fuji/M.9EML, a young apple seedling. Afr. J. Biotechnol. 9:5320–5325.

    CAS  Google Scholar 

  • Zlatev, Z.S., F.C. Lidon, J.C. Ramalho, and I.T. Yordanov. 2006. Comparison of resistance to drought of three bean cultivars. Biol. Plant. 50:389–394.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Yang, Y., Wang, F. et al. Effects of drought stress on the antioxidant systems in three species of Diospyros L.. Hortic. Environ. Biotechnol. 56, 597–605 (2015). https://doi.org/10.1007/s13580-015-0074-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0074-5

Additional key words

Navigation