Skip to main content
Log in

Estimation and Influence Diagnostics for the Multivariate Linear Regression Models with Skew Scale Mixtures of Normal Distributions

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

In this paper, we present recent results in the context of multivariate linear regression models considering that random errors follow multivariate skew scale mixtures of normal distributions. This class of distributions includes the scale mixtures of multivariate normal distributions, as special cases, and provides flexibility in capturing a wide variety of asymmetric behaviors. We implemented the algorithm ECM (Expectation/Conditional Maximization) and we obtained closed-form expressions for all the estimators of the parameters of the proposed model. Inspired by the ECM algorithm, we have developed an influence diagnostics for detecting influential observations to investigate the sensitivity of the maximum likelihood estimators. To examine the performance and the usefulness of the proposed methodology, we present simulation studies and analyze a real dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Autom. Control. 19, 6, 716–723.

    Article  MathSciNet  Google Scholar 

  • Andrews, D.F. and Mallows, C.L. (1974). Scale mixtures of normal distributions. J. R. Stat. Soc. Ser. B Methodol. 36, 99–102.

    MathSciNet  MATH  Google Scholar 

  • Atlas (2013). Atlas do Desenvolvimento Humano no Brasil. http://www.atlasbrasil.org.br/2013/pt/consulta/.

  • Azzalini, A. and Dalla-Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83, 715–726.

    Article  MathSciNet  Google Scholar 

  • Branco, M.D. and Dey, D.K. (2001). A general class of multivariate skew elliptical distributions. J. Multivariate Anal. 79, 99–113.

    Article  MathSciNet  Google Scholar 

  • Cabral, C.R.B., Lachos, V.H. and Zeller, C.B. (2014). Multivariate measurement error models using finite mixtures of skew-student t distributions. J. Multivariate Anal. 124, 179–198.

    Article  MathSciNet  Google Scholar 

  • Chatterjee, S. and Hadi, A.S. (2006). Regression Analysis by Example, 4th edn. WiJey-Interscience, New York.

    Book  Google Scholar 

  • Cook, R.D. (1977). Detection of influential observation in linear regression. Technometrics 19, 15–18.

    MathSciNet  MATH  Google Scholar 

  • Cook, R.D. (1986). Assessment of local influence. J. R. Stat. Soc. Ser. B Methodol. 48, 133–169.

    MathSciNet  MATH  Google Scholar 

  • Cook, R.D. and Weisberg, S. (1999). Applied Regression Including Computing and Graphics. Wiley, New York.

    Book  Google Scholar 

  • Davidson, R. and MacKinnon, J.G. (2003). Econometric - Theory and Methods. Oxford University Press, New York.

    Google Scholar 

  • Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B Methodol.39, 1, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Draper, N.R. and Smith, H. (1998). Applied Regression Analysis, 3rd edn. Wiley, New York.

    Book  Google Scholar 

  • Ferreira, C.S., Bolfarine, H. and Lachos, V.H. (2011). Skew scale mixture of normal distri- butions: properties and estimation. Stat. Method. 8, 154–171.

    Article  Google Scholar 

  • Ferreira, C.S., Lachos, V.H. and Bolfarine, H. (2016). Likelihood-based inference for multivariate skew scale mixtures of normal distributions. AStA Adv. Stat. Anal. 100, 421–441.

    Article  MathSciNet  Google Scholar 

  • Gugliano, A.A. (2017). Globalização contra-hegemônica e instituições participativas: características das cidades com orçamentos participativos no rio grande do sul. Ciênc. Sociais Unisinos 53, 309–316.

    Google Scholar 

  • Harville, D.A. (1997). Matrix Algebra from a Statistician’s Perspective, 1. Springer, New York.

    Book  Google Scholar 

  • Hu, W. (2005). Calibration of multivariate generalized hyperbolic distributions using the em algorithm, with applications in risk management portfolio optimization and portfolio credit risk. Ph.D. thesis. Florida State University.

  • Islam, M.Q., Yildirimb, F. and Yazicia, M. (2014). Inference in multivariate linear regression models with elliptically distributed errors. J. Appl. Stat.41, 1746–1766.

    Article  MathSciNet  Google Scholar 

  • Johnson, R.A. and Wichern, D.W. (2007). Applied Multivariate Statistical Analysis, 6th edn. Pearson Prentice Hall, Upper Saddle River.

    MATH  Google Scholar 

  • Lachos, V.H., Bolfarine, H., Arellano-Valle, R.B. and Montenegro, L.C. (2007). Likelihood based inference for multivariate skew-normal regression models. Commun. Stat. Theory Methods 36, 1769–1786.

    Article  MathSciNet  Google Scholar 

  • Lachos, V.H., Ghosh, P. and Arellano-Valle, R.B. (2010). Likelihood based inference for skew-normal independent linear mixed models. Stat. Sinica 20, 303–322.

    MathSciNet  MATH  Google Scholar 

  • Lange, K. and Sinsheimer, J.S. (1993). Normal/independent distributions and their applications in robust regression. J. Comput. Graph. Statist. 2, 175–198.

    MathSciNet  Google Scholar 

  • Lee, S.-Y., Lu, B. and Song, X.-Y. (2006). Assessing local influence for nonlinear structural equation models with ignorable missing data. Comput. Stat. Data Anal. 50, 1356–1377.

    Article  MathSciNet  Google Scholar 

  • Lee, S.-Y. and Xu, L. (2004). Influence analyses of nonlinear mixed-effects models. Comput. Stat. Data Anal. 45, 321–341.

    Article  MathSciNet  Google Scholar 

  • Lesaffre, E. and Verbeke, G. (1998). Local influence in linear mixed models. Biometrics 54, 570–582.

    Article  Google Scholar 

  • Lobo, C., Matos, R., Cardoso, L., Comini, L. and Pinto, G. (2015). Expanded commuting in the metropolitan region of belo horizonte: evidence for reverse commuting. Rev. bras. Est. Pop. 32, 219–233.

    Article  Google Scholar 

  • Matos, L.A., Lachos, V.H., Lin, T.I. and Castro, L.M. (2019). Heavy-tailed longitudinal regression models for censored data: a robust parametric approach. Test 28, 844–878.

    Article  MathSciNet  Google Scholar 

  • McNeil, A., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts Techniques and Toolss. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Meng, X. and Rubin, D.B. (1993). Maximum likelihood estimation via the ecm algorithm: A general framework. Biometrika 80, 267–278.

    Article  MathSciNet  Google Scholar 

  • Neter, J., Wasserman, W., Kutner, M. and Nachtsheim, C. (1996). Applied Linear Regression Models, 3rd edn. Richard D. Irwin, Chicago.

    Google Scholar 

  • Powell, M.J.D. (1981). Approximation Theory and Methods. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Core Team, R. (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna Austria. http://www.R-project.org/.

  • Rao, C.R. (2002). Linear Statistical Inference and Its Applications, 2nd edn. WiIey-Intersclence, New York.

    Google Scholar 

  • Sahu, S.K., Dey, D.K. and Branco, M.D. (2003). A new class of multivariate skew distributions with applications to bayesian regression models. Can. J. Stat. 31, 129–150.

    Article  MathSciNet  Google Scholar 

  • Schwarz, G. et al. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464.

    Article  MathSciNet  Google Scholar 

  • Seber, G.A.F. (1977). Linear Regression Analysis. Wiley, New York.

    MATH  Google Scholar 

  • Silva, M.T. and Galvão, T.F. (2017). Uso de serviços de saúde entre adultos residentes na região metropolitana de manaus: inquérito de base populacional, 2015. Epidemiol. Serviços Saúde 26, 725–734.

    Article  Google Scholar 

  • Zeller, C.B., Lachos, V.H. and Vilca-Labra, F.E. (2011). Local influence analysis for regression models with scale mixtures of skew-normal distributions. J. Appl. Stat. 38, 343–368.

    Article  MathSciNet  Google Scholar 

  • Zhu, H. and Lee, S. (2001). Local influence for incomplete data models. J. R. Stat. Soc. Ser. B Stat. Methodol. 63, 111–126.

    Article  MathSciNet  Google Scholar 

  • Zhu, H., Lee, S., Wei, B. and Zhou, J. (2001). Case-deletion measures for models with incomplete data. Biometrika 88, 727–737.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Camila Borelli Zeller and Clécio da Silva Ferreira were supported by CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clécio S. Ferreira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. E-and M-steps in the ECM Algorithm

Firstly, we present the result of the exponential family whose corollaries allowed the complete establishment of the E-step in the STN-RM and the SSN-RM. After, we cite the main approximation result by weighted least squares from Powell (1981), which is useful to estimate the parameter τ in the STN-RM.

Proposition 2.

Given a random variable X in the exponential family, that is, with pdf \(g(x|{\boldsymbol {\vartheta }})=\eta (x)\kappa ({\boldsymbol {\vartheta }})e^{{\sum }_{i=1}^{k}\omega _{i}({\boldsymbol {\vartheta }})t_{i}(x)}\) depending on 𝜗 = (𝜗1,…,𝜗m). Then,

$$ E\left( \sum\limits_{i=1}^{k}\frac{\partial \omega_{i}({\boldsymbol{\vartheta}})}{\partial\vartheta_{j}}T_{i}(X)\right)=-\frac{\partial}{\partial\vartheta_{j}}[\ln{\kappa({\boldsymbol{\vartheta}})}], \ \forall j\in\{1,\ldots,m\}. $$

Corollary 1.

Let \(X\sim \text {Gamma}(\alpha ,\beta )\). Then, by Proposition 2,

$$E(\ln{X})=-\frac{\partial}{\partial\alpha}\left[\ln{\left( \frac{\beta^{\alpha}}{{\Gamma}(\alpha)}\right)}\right]={\Psi}(\alpha)-\ln{\beta}.$$

Corollary 2.

Let \(X{\sim }\text {TGamma}(\alpha ,\beta ;(0,1)),\) where TGamma(r,s;(a,b)) denotes the univariate Gamma distribution (Gamma(r,s)), truncated on the interval (a,b). Then, by Proposition 2,

$$ E(\ln{X})=-\frac{\partial}{\partial\alpha}\left[\ln{\left( \frac{1}{{{\int}_{0}^{1}}\ x^{\alpha-1}e^{-\beta x}dx}\right)}\right]=\frac{\beta^{\alpha}{{\int}_{0}^{1}} x^{\alpha-1}\ln{(x)}e^{-\beta x}dx}{{\Gamma}(\alpha)P_{1}(\alpha,\beta)}.$$

Proposition 3.

Given \(q\in {\mathscr{B}}=\mathcal {C}([a, b];\mathbb {R})\), i.e., a continuous real function on interval [a,b] and \( w\in \mathcal {C}([a, b];(0,\infty ))\) a weight function, \(p^{*}\in \mathcal {A}\) — a function in a finite-dimensional subspace of \({\mathscr{B}}\) — minimizes \({{\int \limits }_{a}^{b}} w(x)[q(x)-p(x)]^{2}dx=\left \langle q-p,q-p \right \rangle \text {with} p\in \mathcal {A} \), being called the best weighted least squares approximation for q within \(\mathcal {A}\) if, and only if, the approximation error e = qp satisfies \(\left \langle e^{*},p \right \rangle =0 ,\ \forall p\in \mathcal {A}\).

Corollary 3.

If \(\mathcal {U}=\{p_{0},p_{1},\ldots ,p_{n}\} \) is an orthogonal basis for a subspace \(\mathcal {A}\subset {\mathscr{B}}=\mathcal {C}([a, b];\mathbb {R})\), then \(p_{n}^{*}=\sum \limits _{j=0}^{n} c_{j}p_{j}\) with \(c_{j}=\frac {\left \langle p_{j},q \right \rangle }{\left \|p_{j}\right \|^{2}}\) for each j ∈{0,1,…,n} is the best weighted least squares approximation for the function \(q\in {\mathscr{B}}\) within \(\mathcal {A}\).

Finally, we describe briefly how the above results have been used in each considered model.

  • For the STN-RM \((U \sim Gamma(\tau /2,\tau /2)),\) we obtain the Q2 function given in (3.5), where \(\widehat {s}^{(k)}\) is defined in the expression (3.6) by applying Corollary 1. The derivative of this function relative to ν contains the function \(e^{\eta (\nu )}=\ln {\left (\frac {\nu }{2}\right )}-{\Psi }\left (\frac {\nu }{2}\right )\). We apply a technique that was inspired by a method found in Powell (1981): approximation of functions by least squares weighted; see Proposition 3. This method has been used to approximate the function \(\eta (x)=\ln {\left (\ln {x}-{\Psi }(x)\right )}\) through a function with the form \(\xi (x)=c_{0}+c_{1}\ln {x}+c_{2}(\ln {x})^{2},\) with x = ν/2; see Corollary 3, considering the basis \(\mathcal {U}\) as the orthogonalization of \(\{1,\ln ,\ln ^{2}\}\). For that, we use the weight function \(w(\nu )=\frac {2}{\nu }e^{-\nu /2}\) to obtain, with an accuracy of 10− 4 on the norm constructed in Proposition 3, the approximation

    $$ \eta(\nu) \approx c_{0}+c_{1}\ln{\left( \frac{\nu}{2}\right)}+c_{2}\ln{\left( \frac{\nu}{2}\right)}^{2}, $$

    where \( e^{c_{0}}\approx 0.5768854, c_{1}\approx -1.112673, c_{2}\approx 0.02783412 \). Thus, by replacing the new function in \(\frac {\partial Q_{2}}{\partial \nu }\) and solving its stationary equation, we find the expression (3.9).

  • For the SSN-RM \((U\sim Beta(\tau ,1))\), we obtain

    $$Q_{2}\left( \nu|{\boldsymbol{\widehat{\theta}}}^{(k)}\right)=\sum\limits_{i=1}^{n}Q_{2i}\left( \nu|{\boldsymbol{\widehat{\theta}}}^{(k)}\right)=n\ln{\nu}+(\nu-1)\sum\limits_{i=1}^{n}\widehat{lu_{i}}^{(k)},$$

    where \(\widehat {lu_{i}}^{(k)}\) is defined in the expression (3.7) by applying Corollary 2. Then a simple calculation shows that the solution of the stationary equation involving the derivative \(\frac {\partial Q_{2}}{\partial \nu }\) is (3.10).

  • For the SCN-RM, where τ = (ν,γ) (U is a discrete variable assuming two states, such that h(u|τ) = νI{u=γ} + (1 − ν)I{u= 1}, the i th observation is drawn from of two populations: \(\mathbf {Y}_{1} \sim ~ \text {SN}_{p}\left (\boldsymbol {\mu },\frac {\boldsymbol {\Sigma }}{\gamma },\frac {\boldsymbol {\lambda }}{\sqrt {\gamma }}\right )\) and \(\mathbf {Y}_{2} \sim ~ \text {SN}_{p}\left (\boldsymbol {\mu },\boldsymbol {\Sigma },\boldsymbol {\lambda }\right )\). The complete data can be represented as \(\mathbf {y}_{c}=\left (\mathbf {y}^{\top },\mathbf {v}_{1}^{\top },\mathbf {v}_{2}^{\top },\mathbf {t}^{\top }\right )^{\top },\) where \(\mathbf {v}_{j}=\left (v_{j1},\ldots ,v_{jn}\right )^{\top },\) with Vji = 1 if the i th observation is from the j th population and 0 otherwise, for i = 1,…,n and j = 1,2. It follows that the complete data likelihood for the i th observation is

    $$ \begin{array}{@{}rcl@{}} f_{c}\left( \mathbf{y}_{i},v_{1i},v_{2i},t_{i}\right)&=&2\left[\nu\phi_{p}\left( \mathbf{Y}_{i}|\mathbf{X}_{i}\boldsymbol{\beta},\boldsymbol{\Sigma}/\gamma\right)\right]^{v_{1i}}\left[(1-\nu)\phi_{p}(\mathbf{Y}_{i}|\mathbf{X}_{i}\boldsymbol{\beta},\boldsymbol{\Sigma})\right]^{v_{2i}}\\ &&\times \phi_{1}\left( t_{i}|\boldsymbol{\lambda}^{\top}\boldsymbol{\Sigma}^{-1/2}(\mathbf{Y}_{i}-\mathbf{X}_{i}\boldsymbol{\beta}),1\right). \end{array} $$

    In this context, the Q2 function is given by

    $$ {Q}_{2}\left( \nu,\gamma|{\boldsymbol{\widehat{\theta}}}^{(k)}\right)=\left[\ln{(\nu)}+\frac{p}{2}\ln{(\gamma)}\right]\sum\limits_{i=1}^{n}\widehat{v_{1i}}^{(k)}+\ln{(1-\nu)}\sum\limits_{i=1}^{n}\widehat{v_{2i}}^{(k)}-\frac{\gamma}{2}\sum\limits_{i=1}^{n}\widehat{v_{1i}}^{(k)}\widehat{d_{i}}^{(k)}, $$

    where \(\widehat {v_{1i}}^{(k)}\) and \(\widehat {v_{2i}}^{(k)}\) are defined in the expression (3.8). Then, by solving the stationary conditions of Q2 concerning ν and γ, we find the expressions given in (3.11).

Appendix B. Auxiliary Calculus of the Score Vector and the Information Matrix

Suppose that we have observations of n independent individuals, Y1,…, Yn, where \(\mathbf {Y}_{i}\sim {SSMN}_{p}\left (\mathbf {X}_{i}\boldsymbol {\beta },\boldsymbol {\Sigma }({\boldsymbol {\alpha }}),\boldsymbol {\lambda },\boldsymbol {\tau }\right )\) for i = 1,…,n. Then, the log-likelihood function for \(\boldsymbol {\theta }=\left (\boldsymbol {\beta }^{\top },{\boldsymbol {\alpha }}^{\top },\boldsymbol {\lambda }^{\top },\boldsymbol {\tau }^{\top }\right )^{\top }\in \mathbb {R}^{r},\) given the observed sample \(\mathbf {y}=\left (\mathbf {y}^{\top }_{1},\ldots ,\mathbf {y}^{\top }_{n}\right )^{\top },\) is of the form

$$ \ell(\boldsymbol{\theta})=\sum\limits_{i=1}^{n} \ell_{i}(\boldsymbol{\theta}), $$
(B.1)

where \(\ell _{i}(\boldsymbol {\theta })=\ln {2}-\frac {p}{2}\ln {2\pi }-\frac {1}{2}{\Lambda }+\ln {K_{i}}+\ln {\Phi }(A_{i})\) with \(K_{i}=K_{i}(\boldsymbol {\theta })={\int \limits }^{\infty }_{0}u_{i}^{p/2}e^{-\frac {u_{i} d_{i}}{2}}h(u_{i}|\boldsymbol {\tau })du_{i}\). The score vector is given by \(\frac {\partial \ell (\boldsymbol {\theta })}{\partial \boldsymbol {\theta }}=\sum \limits _{i=1}^{n}\frac {\partial \ell _{i}(\boldsymbol {\theta })}{\partial \boldsymbol {\theta }},\) where \(\frac {\partial \ell _{i}(\boldsymbol {\theta })}{\partial \boldsymbol {\theta }}=\frac {\partial \ell _{i}}{\partial \boldsymbol {\theta }}=\left (\frac {\partial \ell _{i}}{\partial \boldsymbol {\beta }^{\top }},\frac {\partial \ell _{i}}{\partial {\boldsymbol {\alpha }}^{\top }},\frac {\partial \ell _{i}}{\partial \boldsymbol {\lambda }^{\top }},\frac {\partial \ell _{i}}{\partial \boldsymbol {\tau }^{\top }}\right )^{\top }\) with \(\frac {\partial \ell _{i}}{\partial \boldsymbol {\beta }}=-\frac {1}{2}EU_{\mathbf {y}_{i}}\frac {\partial d_{i}}{\partial \boldsymbol {\beta }}+W_{\Phi }(A_{i})\frac {\partial A_{i}}{\partial \boldsymbol {\beta }}, \frac {\partial \ell _{i}}{\partial \boldsymbol {\alpha }}=-\frac {1}{2}\frac {\partial {\Lambda }}{\partial \boldsymbol {\alpha }}-\frac {1}{2}EU_{\mathbf {y}_{i}}\frac {\partial d_{i}}{\partial \boldsymbol {\alpha }}+W_{\Phi }(A_{i})\frac {\partial A_{i}}{\partial \boldsymbol {\alpha }},\) \(\frac {\partial \ell _{i}}{\partial \boldsymbol {\lambda }}=W_{\Phi }(A_{i})\frac {\partial A_{i}}{\partial \boldsymbol {\lambda }}\quad \text {and}\) \( \quad \frac {\partial \ell _{i}}{\partial \boldsymbol {\tau }}=\frac {1}{K_{i}}\frac {\partial K_{i}}{\partial \boldsymbol {\tau }},\) such that WΦ(Ai) = ϕ1(Ai)/Φ(Ai) and \(EU_{\mathbf {y}_{i}}=E\left (U_{i}|\mathbf {Y}=\mathbf {y}_{i}\right )\). It follows that the matrix of the second derivatives concerning 𝜃 is given by

$$ \begin{array}{@{}rcl@{}} \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\theta}\partial\boldsymbol{\theta}^{\top}}= \begin{bmatrix} \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\beta}\partial\boldsymbol{\alpha}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\beta}\partial\boldsymbol{\lambda}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\beta}\partial\boldsymbol{\tau}^{\top}} \\ \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial{\boldsymbol{\alpha}}\partial\boldsymbol{\beta}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\alpha}\partial\boldsymbol{\alpha}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial{\boldsymbol{\alpha}}\partial\boldsymbol{\lambda}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial{\boldsymbol{\alpha}}\partial\boldsymbol{\tau}^{\top}} \\ \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\lambda}\partial\boldsymbol{\beta}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\lambda}\partial\boldsymbol{\alpha}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\lambda}\partial\boldsymbol{\lambda}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\lambda}\partial\boldsymbol{\tau}^{\top}} \\ \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\tau}\partial\boldsymbol{\beta}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\tau}\partial\boldsymbol{\alpha}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\tau}\partial\boldsymbol{\lambda}^{\top}} & \frac{\partial^{2}\ell_{i}(\boldsymbol{\theta})}{\partial\boldsymbol{\tau}\partial\boldsymbol{\tau}^{\top}} \end{bmatrix}, \end{array} $$

with

$$ \begin{array}{@{}rcl@{}} \frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^{\top}}&=&-\frac{1}{2}EU_{\mathbf{y}_{i}}\frac{\partial d_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^{\top}}+\frac{1}{4}VU_{\mathbf{y}_{i}}\frac{\partial d_{i}}{\partial\boldsymbol{\beta}}\frac{\partial d_{i}}{\partial\boldsymbol{\beta}^{\top}}+W^{\prime}_{\Phi}(A_{i})\frac{\partial A_{i}}{\partial\boldsymbol{\beta}}\frac{\partial A_{i}}{\partial\boldsymbol{\beta}^{\top}},\\ \frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\beta}\partial{\boldsymbol{\alpha}}^{\top}}&=&-\frac{1}{2}EU_{\mathbf{y}_{i}}\frac{\partial d_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\alpha}^{\top}}+\frac{1}{4}VU_{\mathbf{y}_{i}}\frac{\partial d_{i}}{\partial\boldsymbol{\beta}}\frac{\partial d_{i}}{\partial\boldsymbol{\alpha}^{\top}}+W_{\Phi}(A_{i})\frac{\partial^{2}A_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\alpha}^{\top}}+W^{\prime}_{\Phi}(A_{i})\frac{\partial A_{i}}{\partial\boldsymbol{\beta}}\frac{\partial A_{i}}{\partial\boldsymbol{\alpha}^{\top}},\\ \frac{\partial^{2}\ell_{i}}{\partial{\boldsymbol{\alpha}}\partial{\boldsymbol{\alpha}}^{\top}}&=&-\frac{1}{2}\frac{\partial^{2}{\Lambda}}{\partial{\boldsymbol{\alpha}}\partial{\boldsymbol{\alpha}}^{\top}}-\frac{1}{2}EU_{\mathbf{y}_{i}}\frac{\partial d_{i}}{\partial\boldsymbol{\alpha}\partial\boldsymbol{\alpha}^{\top}}+\frac{1}{4}VU_{\mathbf{y}_{i}}\frac{\partial d_{i}}{\partial\boldsymbol{\alpha}}\frac{\partial d_{i}}{\partial\boldsymbol{\alpha}^{\top}}+W_{\Phi}(A_{i})\frac{\partial^{2}A_{i}}{\partial\boldsymbol{\alpha}\partial\boldsymbol{\alpha}^{\top}}\\&&+W^{\prime}_{\Phi}(A_{i})\frac{\partial A_{i}}{\partial\boldsymbol{\alpha}}\frac{\partial A_{i}}{\partial\boldsymbol{\alpha}^{\top}},\\ \frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\lambda}^{\top}}&=&W_{\Phi}(A_{i})\frac{\partial^{2}A_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\lambda}^{\top}}+W^{\prime}_{\Phi}(A_{i})\frac{\partial A_{i}}{\partial\boldsymbol{\beta}}\frac{\partial A_{i}}{\partial\boldsymbol{\lambda}^{\top}},\quad \frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\lambda}\partial\boldsymbol{\lambda}^{\top}}=W^{\prime}_{\Phi}(A_{i})\frac{\partial A_{i}}{\partial\boldsymbol{\lambda}}\frac{\partial A_{i}}{\partial\boldsymbol{\lambda}^{\top}},\\ \frac{\partial^{2}\ell_{i}}{\partial{\boldsymbol{\alpha}}\partial\boldsymbol{\lambda}^{\top}}&=&W_{\Phi}(A_{i})\frac{\partial^{2}A_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\lambda}^{\top}}+W^{\prime}_{\Phi}(A_{i})\frac{\partial A_{i}}{\partial\boldsymbol{\beta}}\frac{\partial A_{i}}{\partial\boldsymbol{\lambda}^{\top}},\quad \frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\lambda}\partial\boldsymbol{\tau}^{\top}}=\mathbf{0},\\ \frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\tau}\partial\boldsymbol{\tau}^{\top}}&=&\frac{1}{K_{i}}\frac{\partial^{2}K_{i}}{\partial\boldsymbol{\tau}\partial\boldsymbol{\tau}^{\top}}-\frac{1}{{K_{i}^{2}}}\frac{\partial K_{i}}{\partial\boldsymbol{\tau}}\frac{\partial K_{i}}{\partial\boldsymbol{\tau}^{\top}},\quad \frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\tau}^{\top}}=\frac{1}{K_{i}}\frac{\partial^{2}K_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\tau}^{\top}}-\frac{1}{{K_{i}^{2}}}EU_{\mathbf{y}_{i}}\frac{\partial d_{i}}{\partial\boldsymbol{\beta}}\frac{\partial K_{i}}{\partial\boldsymbol{\tau}^{\top}},\\ \frac{\partial^{2}\ell_{i}}{\partial{\boldsymbol{\alpha}}\partial\boldsymbol{\tau}^{\top}}&=&\frac{1}{K_{i}}\frac{\partial^{2}K_{i}}{\partial{\boldsymbol{\alpha}}\partial\boldsymbol{\tau}^{\top}}-\frac{1}{{K_{i}^{2}}}EU_{\mathbf{y}_{i}}\frac{\partial d_{i}}{\partial\boldsymbol{\alpha}}\frac{\partial K_{i}}{\partial\boldsymbol{\tau}^{\top}}, \end{array} $$

where \(W_{\Phi }^{\prime }(A_{i})=-W_{\Phi }(A_{i})(A_{i}+W_{\Phi }(A_{i}))\) and \(VU_{\mathbf {y}_{i}}=Var\left (U_{i}|\mathbf {Y}=\mathbf {y}_{i}\right )\). The first and second derivatives of Ki(𝜃) concerning 𝜃 are given by \(\frac {\partial K_{i}(\boldsymbol {\theta })}{\partial \boldsymbol {\theta }}=-\frac {1}{2} K_{i}(\boldsymbol {\theta }) \frac {\partial d_{i}}{\partial \boldsymbol {\theta }} EU_{\mathbf {y}_{i}}\) and \(\frac {\partial ^{2} K_{i}(\boldsymbol {\theta })}{\partial \boldsymbol {\theta } \partial \boldsymbol {\theta }^{\top }}=-\frac {K_{i}(\boldsymbol {\theta })}{2}\left [\frac {\partial ^{2} d_{i}}{\partial \boldsymbol {\theta } \partial \boldsymbol {\theta }^{\top }} EU_{\mathbf {y}_{i}}-\frac {1}{2}\frac {\partial d_{i}}{\partial \boldsymbol {\theta }}\frac {\partial d_{i}}{\partial \boldsymbol {\theta }^{\top }}EU^{2}_{\mathbf {y}_{i}} \right ]\), such that \(EU^{2}_{\mathbf {y}_{i}}=E\left ({U_{i}^{2}}|\mathbf {Y}=\mathbf {y}_{i}\right )\). The expected values \(E\left (U^{l}|\mathbf {Y}=\mathbf {y}\right )\) for the SN, STN, SSN and SCN distributions can be found in Ferreira et al. (2016); see Section 2.1. According to Harville (1997), consider α = vech(B), where Σ1/2 = B = B(α). Thus, the first and second derivatives of Λ, Ai and di can be obtained.

  • Λ

    $$ \begin{array}{@{}rcl@{}} \frac{\partial{\Lambda}}{\partial\boldsymbol{\theta}}&=&\left( \mathbf{0},\frac{\partial{\Lambda}}{\partial{\boldsymbol{\alpha}}^{\top}},\mathbf{0},\mathbf{0}\right)^{\top}, \frac{\partial{\Lambda}}{\partial\boldsymbol{\alpha}}= \left[\frac{\partial{\Lambda}}{\partial\alpha_{j}}\right]_{j\in\{1,\ldots,p_{0}\}}=\left[2\text{tr}\left( \mathbf{B}^{-1}\dot{\mathbf{B}}_{j}\right)\right]_{j\in\{1,\ldots,p_{0}\}},\\ \frac{\partial^{2}{\Lambda}}{\partial\boldsymbol{\theta}\partial\boldsymbol{\theta}^{\top}}&=&\begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \frac{\partial^{2}{\Lambda}}{\partial{\boldsymbol{\alpha}}\partial{\boldsymbol{\alpha}}^{\top}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix},\\ \frac{\partial^{2}{\Lambda}}{\partial\boldsymbol{\alpha}\partial\boldsymbol{\alpha}^{\top}}&=&\left[\frac{\partial^{2}{\Lambda}}{\partial\alpha_{j}\partial\alpha_{k}}\right]_{j,k\in\{1,\ldots,p_{0}\}}=\left[-\text{tr}\left( \mathbf{B}^{-1}\dot{\mathbf{B}}_{k}\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}\right)\right]_{j,k\in\{1,\ldots,p_{0}\}}, \end{array} $$

    where \(\dot {\mathbf {B}}_{s}=\partial {\mathbf {B}(\boldsymbol {\alpha })}/\partial {\alpha _{s}}\) with s = 1,2,…,p0 = p(p + 1)/2 and ei = yiXiβ.

  • Ai

    $$ \begin{array}{@{}rcl@{}} \frac{\partial A_{i}}{\partial\boldsymbol{\beta}}&=&-\mathbf{X}_{i}^{\top}\mathbf{B}^{-1}\boldsymbol{\lambda}, \frac{\partial A_{i}}{\partial\alpha_{j}}=-\boldsymbol{\lambda}^{\top}\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}\mathbf{B}^{-1}\left( \mathbf{Y}_{i}-\mathbf{X}_{i}\boldsymbol{\beta}\right), \frac{\partial A_{i}}{\partial\boldsymbol{\lambda}}=\mathbf{B}^{-1}\mathbf{e}_{i}, \frac{\partial A_{i}}{\partial\boldsymbol{\tau}}=\mathbf{0},\\ \frac{\partial^{2}A_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^{\top}}&=&\mathbf{0}, \frac{\partial^{2}A_{i}}{\partial\boldsymbol{\beta}\partial\alpha_{j}}=\mathbf{X}_{i}^{\top}\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}\mathbf{B}^{-1}\boldsymbol{\lambda}, \frac{\partial^{2}A_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\lambda}^{\top}}=-\mathbf{X}_{i}^{\top}\mathbf{B}^{-1},\quad \frac{\partial^{2}A_{i}}{\partial\boldsymbol{\theta}\partial\boldsymbol{\tau}^{\top}}=\mathbf{0},\\ \frac{\partial^{2}A_{i}}{\partial\alpha_{j}\partial\alpha_{k}}&=&-\boldsymbol{\lambda}^{\top}\mathbf{B}^{-1}\left( \dot{\mathbf{B}}_{k}\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}+\dot{\mathbf{B}}_{j}\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}\right)\mathbf{B}^{-1}\mathbf{e}_{i}\\ \frac{\partial^{2}A_{i}}{\partial\alpha_{j}\partial\boldsymbol{\lambda}^{\top}}&=&-\mathbf{e}_{i}^{\top}\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}\mathbf{B}^{-1}, \frac{\partial^{2}A_{i}}{\partial\boldsymbol{\lambda}\partial\boldsymbol{\lambda}^{\top}}=\mathbf{0}. \end{array} $$
  • di

    $$ \begin{array}{@{}rcl@{}} \frac{\partial d_{i}}{\partial\boldsymbol{\beta}}&=&-2\mathbf{X}_{i}^{\top}\mathbf{B}^{-2}\mathbf{e}_{i}, \frac{\partial d_{i}}{\partial\alpha_{j}}=-\mathbf{e}_{i}^{\top}\mathbf{B}^{-1}\left( \dot{\mathbf{B}}_{j}\mathbf{B}^{-1}+\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}\right)\mathbf{B}^{-1}\mathbf{e}_{i}, \frac{\partial d_{i}}{\partial\boldsymbol{\lambda}}=\mathbf{0}, \frac{\partial d_{i}}{\partial\boldsymbol{\tau}}=\mathbf{0},\\ \frac{\partial^{2}d_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^{\top}}&=&2\mathbf{X}_{i}^{\top}\mathbf{B}^{-2}\mathbf{X}_{i}, \frac{\partial^{2}d_{i}}{\partial\boldsymbol{\beta}\partial\alpha_{j}}=2\mathbf{X}_{i}^{\top}\mathbf{B}^{-1}\left( \dot{\mathbf{B}}_{j}\mathbf{B}^{-1}+\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}\right)\mathbf{B}^{-1}\mathbf{e}_{i},\\ \frac{\partial^{2}d_{i}}{\partial\boldsymbol{\theta}\partial\boldsymbol{\lambda}^{\top}}&=&\mathbf{0}, \frac{\partial^{2}d_{i}}{\partial\boldsymbol{\theta}\partial\boldsymbol{\tau}^{\top}}=\mathbf{0},\\ \frac{\partial^{2}d_{i}}{\partial\alpha_{j}\partial\alpha_{k}}&=&\mathbf{e}_{i}^{\top}\mathbf{B}^{-1}\left( \dot{\mathbf{B}}_{k}\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}\mathbf{B}^{-1}+\dot{\mathbf{B}}_{j}\mathbf{B}^{-1}\dot{\mathbf{B}}_{k}\mathbf{B}^{-1}+\dot{\mathbf{B}}_{j}\mathbf{B}^{-2}\dot{\mathbf{B}}_{k}+\dot{\mathbf{B}}_{k}\mathbf{B}^{-2}\dot{\mathbf{B}}_{j}\right.\\ &&\left.+\mathbf{B}^{-1}\dot{\mathbf{B}}_{k}\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}+\mathbf{B}^{-1}\dot{\mathbf{B}}_{j}\mathbf{B}^{-1}\dot{\mathbf{B}}_{k}\right)\mathbf{B}^{-1}\mathbf{e}_{i}, \end{array} $$

and the derivatives of i can be obtained for the STN-RM, the SSN-RM and the SCN-RM as follows.

  • STN-RM

    $$ \begin{array}{@{}rcl@{}} \frac{\partial \ell_{i}}{\partial\tau}&=&\frac{1}{2}\left[\ln{\left( \frac{\tau}{\tau+d_{i}}\right)}+{\Psi}\left( \frac{\tau+p}{2}\right)-{\Psi}\left( \frac{\tau}{2}\right)+\frac{d_{i}-p}{\tau+d_{i}}\right],\\\frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\theta}_{1}\partial\tau}&=&\frac{1}{2}\frac{p-d_{i}}{(\tau+d_{i})^{2}}\frac{\partial d_{i}}{\partial\boldsymbol{\theta}_{1}}\quad\text{and}\\\frac{\partial^{2}\ell_{i}}{\partial\tau^{2}}&=&\frac{1}{4}\left[{\Psi}_{1}\left( \frac{\tau+p}{2}\right)-{\Psi}_{1}\left( \frac{\tau}{2}\right)+\frac{2(d_{i}+p\tau)}{\tau(\tau+d_{i})^{2}}\right], \end{array} $$

    where Ψ1(.) is the trigamma function.

  • SSN-RM

    $$ \begin{array}{@{}rcl@{}} \frac{\partial \ell_{i}}{\partial\tau}&=&\frac{1}{\tau}+\frac{I(1,1)}{I(1,0)}, \frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\theta}_{1}\partial\tau}=-\frac{1}{2}\left[\frac{I(0,1)}{I(1,0)}-\frac{I(1,1)I(0,0)}{I(1,0)^{2}}\right]\frac{\partial d_{i}}{\partial\boldsymbol{\theta}_{1}} \text{and} \\ \frac{\partial^{2}\ell_{i}}{\partial\tau^{2}}&=&\frac{I(1,2)}{I(1,0)}-\left[\frac{I(1,1)}{I(1,0)}\right]^{2}-\frac{1}{\tau^{2}}, \end{array} $$

    where \(I(a,b)={{\int \limits }_{0}^{1}}\ u^{\nu +p/2-a}(\ln {u})^{b} e^{-ud_{i}/2}du\).

  • SCN-RM, where τ = (ν,γ)

    $$ \begin{array}{@{}rcl@{}} \frac{\partial\ell_{i}}{\partial\nu}&=&\frac{\gamma^{p/2}e^{(1-\gamma) d_{i}/2}-1}{1-\nu+\nu\gamma^{p/2}e^{(1-\gamma)d_{i}/2}},\quad \frac{\partial\ell_{i}}{\partial\gamma}=\frac{\nu}{2}\frac{(p-\gamma d_{i})\left( \gamma^{p/2-1}e^{(1-\gamma) d_{i}/2}-1\right)}{1-\nu+\nu\gamma^{p/2}e^{(1-\gamma)d_{i}/2}},\\ \frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\theta}_{1}\partial\nu}&=&\frac{1}{2}\frac{(1-\gamma)\gamma^{p/2}e^{(1-\gamma)d_{i}/2}}{\left[1-\nu+\nu\gamma^{p/2}e^{(1-\gamma)d_{i}/2}\right]^{2}}\frac{\partial d_{i}}{\partial\boldsymbol{\theta}_{1}},\\ \frac{\partial^{2}\ell_{i}}{\partial\boldsymbol{\theta}_{1}\partial\gamma}&=&\frac{\nu}{4}\frac{(1-\nu)\gamma^{p/2-1}[p-\gamma(2+p+d_{i})+\gamma^{2}d_{i}]e^{(1-\gamma)d_{i}/2}-2\nu\gamma^{p} e^{(1-\gamma) d_{i}}}{\left[1-\nu+\nu\gamma^{p/2}e^{(1-\gamma)d_{i}/2}\right]^{2}}\frac{\partial d_{i}}{\partial\boldsymbol{\theta}_{1}},\\ \frac{\partial^{2}\ell_{i}}{\partial\nu^{2}}&=&-\frac{\left[\gamma^{p/2}e^{(1-\gamma) d_{i}/2}-1\right]^{2}}{\left[1-\nu+\nu\gamma^{p/2}e^{(1-\gamma)d_{i}/2}\right]^{2}},\quad \frac{\partial^{2}\ell_{i}}{\partial\nu\partial\gamma}=\frac{1}{2}\frac{(p-\gamma d_{i})\gamma^{p/2-1}e^{(1-\gamma) d_{i}/2}}{\left[1-\nu+\nu\gamma^{p/2}e^{(1-\gamma)d_{i}/2}\right]^{2}},\\ \frac{\partial^{2}\ell_{i}}{\partial\gamma^{2}}&=&\frac{\nu}{4}\frac{(1-\nu)\gamma^{p/2-2}[(p-\gamma d_{i})^{2}-2p]e^{(1-\gamma)d_{i}/2}-2p\nu\gamma^{p-2}e^{(1-\gamma) d_{i}}}{\left[1-\nu+\nu\gamma^{p/2}e^{(1-\gamma)d_{i}/2}\right]^{2}}. \end{array} $$

Appendix C. Auxiliary Calculus for the Influence Measures

To obtain the diagnostic measures, it is necessary to compute \(\frac {\partial ^{2}Q}{\partial \boldsymbol {\theta }\partial \boldsymbol {\theta }^{\top }}\left (\!{\boldsymbol {\theta }}|{\boldsymbol {\widehat {\theta }}}\right )\) \(={\sum }_{i=1}^{n} \frac {\partial ^{2}Q_{i}}{\partial \boldsymbol {\theta }\partial \boldsymbol {\theta }^{\top }}\left ({\boldsymbol {\theta }}|{\boldsymbol {\widehat {\theta }}}\right )\). Hence, the Hessian matrix has elements given by

$$ \begin{array}{@{}rcl@{}} \frac{\partial^{2} Q_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^{\top}}&=&-\frac{1}{2}\widehat{u_{i}}\frac{\partial^{2} d_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^{\top}}-\frac{\partial A_{i}}{\partial\boldsymbol{\beta}}\frac{\partial A_{i}}{\partial\boldsymbol{\beta}^{\top}},\\ \frac{\partial^{2} Q_{i}}{\partial\boldsymbol{\beta}\partial{\boldsymbol{\alpha}}^{\top}}&=&-\frac{1}{2}\widehat{u_{i}}\frac{\partial^{2} d_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\alpha}^{\top}}+\left( \widehat{t_{i}}-A_{i}\right)\frac{\partial^{2} A_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\alpha}^{\top}}-\frac{\partial A_{i}}{\partial\boldsymbol{\beta}}\frac{\partial A_{i}}{\partial\boldsymbol{\alpha}^{\top}},\\ \frac{\partial^{2} Q_{i}}{\partial\boldsymbol{\alpha}\partial\boldsymbol{\alpha}^{\top}}&=&-\frac{1}{2}\frac{\partial^{2}{\Lambda}}{\partial\boldsymbol{\alpha}\partial\boldsymbol{\alpha}^{\top}}-\frac{1}{2}\widehat{u_{i}}\frac{\partial^{2} d_{i}}{\partial\boldsymbol{\alpha}\partial\boldsymbol{\alpha}^{\top}}+\left( \widehat{t_{i}}-A_{i}\right)\frac{\partial^{2} A_{i}}{\partial\boldsymbol{\alpha}\partial\boldsymbol{\alpha}^{\top}}-\frac{\partial A_{i}}{\partial\boldsymbol{\alpha}}\frac{\partial A_{i}}{\partial\boldsymbol{\alpha}^{\top}},\\ \frac{\partial^{2} Q_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\lambda}^{\top}}&=&\left( \widehat{t_{i}}-A_{i}\right)\frac{\partial^{2} A_{i}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\lambda}^{\top}}-\frac{\partial A_{i}}{\partial\boldsymbol{\beta}}\frac{\partial A_{i}}{\partial\boldsymbol{\lambda}^{\top}},\\ \frac{\partial^{2}Q_{i}}{\partial{\boldsymbol{\alpha}}\partial\boldsymbol{\lambda}^{\top}}&=&\left( \widehat{t_{i}}-A_{i}\right)\frac{\partial^{2} A_{i}}{\partial\boldsymbol{\alpha}\partial\boldsymbol{\lambda}^{\top}}-\frac{\partial A_{i}}{\partial\boldsymbol{\alpha}}\frac{\partial A_{i}}{\partial\boldsymbol{\lambda}^{\top}},\\ \frac{\partial^{2} Q_{i}}{\partial\boldsymbol{\lambda}\partial\boldsymbol{\lambda}^{\top}}&=&-\frac{\partial A_{i}}{\partial\boldsymbol{\lambda}}\frac{\partial A_{i}}{\partial\boldsymbol{\lambda}^{\top}}, \quad \frac{\partial^{2} Q_{i}}{\partial\boldsymbol{\theta}_{1}\partial\boldsymbol{\tau}^{\top}}=\mathbf{0}, \end{array} $$

where \(A_{i}=A_{i}(\boldsymbol {\theta })=\boldsymbol {\lambda }^{\top }\boldsymbol {\Sigma }^{-1/2}\left (\mathbf {y}_{i}-\mathbf {X}_{i}\boldsymbol {\beta }\right )\). The terms \(\frac {\partial ^{2} Q_{i}}{\partial \boldsymbol {\tau }\partial \boldsymbol {\tau }^{\top }}\) can be readily evaluated for the STN-RM, the SSN-RM and the SCN-RM as follows.

  • STN-RM

    $$ \frac{\partial^{2}Q_{i}}{\partial\tau^{2}}=\frac{1}{4}\left[\frac{2}{\tau}-{\varPsi}_{1}\left( \frac{\tau}{2}\right)\right],$$

    where Ψ1(⋅) is the trigamma function.

  • SSN-RM

    $$\frac{\partial^{2}Q_{i}}{\partial\tau^{2}}=-\frac{1}{\tau^{2}}.$$
  • SCN-RM, where τ = (ν,γ)

    $$\frac{\partial^{2}Q_{i}}{\partial\nu^{2}}=-\left[\frac{\widehat{v_{1i}}}{\nu^{2}}+\frac{\widehat{v_{2i}}}{(1-\nu)^{2}}\right],\quad \frac{\partial^{2}Q_{i}}{\partial\nu\partial\gamma}=0 \quad\text{and} \quad \frac{\partial^{2}Q_{i}}{\partial\gamma^{2}}=-\frac{p\widehat{v_{1i}}}{2\gamma^{2}}.$$

In addition, the derivatives of Λ, di and Ai are given in Appendix B.

  1. (i)

    Case weight perturbation

    $$ \begin{array}{@{}rcl@{}} \frac{\partial Q_{i}}{\partial\boldsymbol{\beta}}&=&-\frac{1}{2}\widehat{u_{i}}\frac{\partial d_{i}}{\partial\boldsymbol{\beta}}+\left( \widehat{t_{i}}-A_{i}\right)\frac{\partial A_{i}}{\partial\boldsymbol{\beta}},\quad \frac{\partial Q_{i}}{\partial\boldsymbol{\alpha}}=-\frac{1}{2}\frac{\partial{\Lambda}}{\partial\boldsymbol{\alpha}}-\frac{1}{2}\widehat{u_{i}}\frac{\partial d_{i}}{\partial\boldsymbol{\alpha}}+\left( \widehat{t_{i}}-A_{i}\right)\frac{\partial A_{i}}{\partial\boldsymbol{\alpha}},\\ \frac{\partial Q_{i}}{\partial\boldsymbol{\lambda}}&=&\left( \widehat{t_{i}}-A_{i}\right)\frac{\partial A_{i}}{\partial\boldsymbol{\lambda}} \quad \text{and} \quad \frac{\partial Q_{i}}{\partial\boldsymbol{\tau}} \end{array} $$

can be readily evaluated for the STN-RM, the SSN-RM and the SCN-RM as follows.

  • STN-RM

    $$ \begin{array}{@{}rcl@{}} \frac{\partial Q_{i}}{\partial\tau}=\frac{1}{2}\left[\ln{\left( \frac{\tau}{2}\right)}-{\Psi}\left( \frac{\tau}{2}\right)+1-\widehat{u_{i}}+\widehat{lu_{i}}\right].\end{array} $$
  • SSN-RM

    $$ \begin{array}{@{}rcl@{}} \frac{\partial Q_{i}}{\partial\tau}=\frac{1}{\tau}+\widehat{lu_{i}}. \end{array} $$
  • SCN-RM, where τ = (ν,γ)

    $$ \begin{array}{@{}rcl@{}}\frac{\partial Q_{i}}{\partial\nu}=\frac{\widehat{v_{1i}}}{\nu}-\frac{\widehat{v_{2i}}}{1-\nu}\quad \text{and} \quad \frac{\partial Q_{i}}{\partial\gamma}=\frac{1}{2\gamma}\widehat{v_{1i}}(p-\gamma d_{i}). \end{array} $$
  1. (ii)

    Response perturbation

    $$ \begin{array}{@{}rcl@{}} \frac{\partial A_{i}^{\boldsymbol{\omega}_{0}}}{\partial\boldsymbol{\omega}^{\top}}&=&\boldsymbol{\lambda}^{\top}\mathbf{B}^{-1}\mathbf{D}\mathbf{S}_{\mathbf{y}}\mathbf{c}_{i}^{\top}, \qquad \frac{\partial^{2}A_{i}^{\boldsymbol{\omega}_{0}}}{\partial\boldsymbol{\lambda}\partial\boldsymbol{\omega}^{\top}}=\mathbf{B}^{-1}\mathbf{D}\mathbf{S}_{\mathbf{y}}\mathbf{c}_{i}^{\top},\\ \frac{\partial^{2}d_{i}^{\boldsymbol{\omega}_{0}}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\omega}^{\top}}&=&-2\mathbf{X}_{i}^{\top}\mathbf{B}^{-2}\mathbf{D}\mathbf{S}_{\mathbf{y}}\mathbf{c}_{i}^{\top}, \qquad \frac{\partial^{2}A_{i}^{\boldsymbol{\omega}_{0}}}{\partial\alpha_{k}\partial\boldsymbol{\omega}^{\top}}=-\boldsymbol{\lambda}^{\top}\mathbf{B}^{-1}\dot{\mathbf{B}}_{k}\mathbf{B}^{-1}\mathbf{D}\mathbf{S}_{\mathbf{y}}\mathbf{c}_{i}^{\top},\\ \frac{\partial^{2}d_{i}^{\boldsymbol{\omega}_{0}}}{\partial\alpha_{k}\partial\boldsymbol{\omega}^{\top}}&=&-2\mathbf{e}_{i}^{\top}\mathbf{B}^{-1}\left( \dot{\mathbf{B}}_{k}\mathbf{B}^{-1}+\mathbf{B}^{-1}\dot{\mathbf{B}}_{k}\right)\mathbf{B}^{-1}\mathbf{D}\mathbf{S}_{\mathbf{y}}\mathbf{c}_{i}^{\top}. \end{array} $$
  1. (iii)

    Explanatory perturbation

    $$ \begin{array}{@{}rcl@{}} \frac{\partial A_{i}^{\boldsymbol{\omega}_{0}}}{\partial\boldsymbol{\omega}^{\top}}&=&-\boldsymbol{\lambda}^{\top}\mathbf{B}^{-1}\mathbf{E}\mathbf{M}_{\mathbf{x}}\boldsymbol{\beta}\mathbf{c}_{i}^{\top}, \qquad \frac{\partial^{2}A_{i}^{\boldsymbol{\omega}_{0}}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\omega}^{\top}}=-\mathbf{E}\mathbf{M}_{\mathbf{x}}^{\top}\mathbf{B}^{-1}\boldsymbol{\lambda}\mathbf{c}_{i}^{\top},\\ \frac{\partial^{2}A_{i}^{\boldsymbol{\omega}_{0}}}{\partial\alpha_{k}\partial\boldsymbol{\omega}^{\top}}&=&\boldsymbol{\lambda}^{\top}\mathbf{B}^{-1}\dot{\mathbf{B}}_{k}\mathbf{B}^{-1}\mathbf{E}\mathbf{M}_{\mathbf{x}}\boldsymbol{\beta}\mathbf{c}_{i}^{\top}, \qquad \frac{\partial^{2}A_{i}^{\boldsymbol{\omega}_{0}}}{\partial\boldsymbol{\lambda}\partial\boldsymbol{\omega}^{\top}}=-\mathbf{B}^{-1}\mathbf{E}\mathbf{M}_{\mathbf{x}}\boldsymbol{\beta}\mathbf{c}_{i}^{\top},\\ \frac{\partial^{2}d_{i}^{\boldsymbol{\omega}_{0}}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\omega}^{\top}}&=&-2\left( \mathbf{E}\mathbf{M}_{\mathbf{x}}^{\top}\mathbf{B}^{-2}\mathbf{e}_{i}-\mathbf{X}_{i}^{\top}\mathbf{B}^{-2}\mathbf{E}\mathbf{M}_{\mathbf{x}}\boldsymbol{\beta}\right)\mathbf{c}_{i}^{\top},\\ \frac{\partial^{2}d_{i}^{\boldsymbol{\omega}_{0}}}{\partial\alpha_{k}\partial\boldsymbol{\omega}^{\top}}&=&2\mathbf{e}_{i}^{\top}\mathbf{B}^{-1}\left( \dot{\mathbf{B}}_{k}\mathbf{B}^{-1}+\mathbf{B}^{-1}\dot{\mathbf{B}}_{k}\right)\mathbf{B}^{-1}\mathbf{E}\mathbf{M}_{\mathbf{x}}\boldsymbol{\beta}\mathbf{c}_{i}^{\top}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louredo, G.M.S., Zeller, C.B. & Ferreira, C.S. Estimation and Influence Diagnostics for the Multivariate Linear Regression Models with Skew Scale Mixtures of Normal Distributions. Sankhya B 84, 204–242 (2022). https://doi.org/10.1007/s13571-021-00257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-021-00257-y

Keywords

AMS (2000) subject classification

Navigation