Skip to main content

Advertisement

Log in

Implications of FGF19 on sorafenib-mediated nitric oxide production in hepatocellular carcinoma cells - a short report

  • Report
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Hepatocellular carcinoma (HCC), a primary neoplasm derived from hepatocytes, is the second leading cause of cancer mortality worldwide. Previous work has shown that fibroblast growth factor 19 (FGF19), an oncogenic driver, acts as a negative regulator of the therapeutic efficacy of the tyrosine kinase inhibitor sorafenib in HCC cells. The FGF19-mediated mechanism affecting sorafenib treatment, however, still remains to be resolved. Here, we hypothesize that the FGF19-FGFR4 axis may affect the effectiveness of sorafenib in the treatment of HCC.

Methods

FGF19 and FGFR4 cDNAs were cloned into a pcDNA3.1 vector and subsequently used for exogenous over-expression analyses. FGF19 knockdown cells were generated using a lentiviral-mediated short hairpin RNA (shRNA) methodology and FGFR4 knockout cells were generated using a CRISPR-Cas9 methodology. FGFR4 activation in HCC cells was inhibited by BLU9931. The effects of exogenous gene over-expression, expression knockdown and knockout, as well as drug efficacies in HCC cells, were validated using Western blotting. HCC cell proliferation was assessed using a CellTiter 96® AQueous One Solution Cell Proliferation Assay, whereas NO levels were assessed using DAF-FM DA staining in conjunction with electrochemical biosensors.

Results

We found that FGF19, when exogenously overexpressed, results in a reduced sorafenib-induced NO generation and a decreased proliferation of HCC cells. In contrast, we found that either FGF19 silencing or knockout of its receptor FGFR4 sensitized HCC cells to sorafenib through the induction of NO generation. Concordantly, we found that inactivation of FGFR4 by BLU9931 enhanced the sensitivity of HCC cells to sorafenib.

Conclusion

From our data we conclude that the FGF19-FGFR4 axis may play a critical role in the effects elicited by sorafenib in HCC cells. Blocking the FGF19-FGFR4 axis may provide novel opportunities to improve the efficacy of sorafenib in the treatment of patients with HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. B. Zhai, F. Hu, X. Jiang, J. Xu, D. Zhao, B. Liu, S. Pan, X. Dong, G. Tan, Z. Wei, H. Qiao, H. Jiang, X. Sun, Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol Cancer Ther 13, 1589–1598 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. J. Chiu, Y.F. Tang, T.J. Yao, A. Wong, H. Wong, R. Leung, P. Chan, T.T. Cheung, A.C. Chan, R. Pang, S.T. Fan, R. Poon, T. Yau, The use of single agent sorafenib in the treatment of advanced hepatocellular carcinoma patients with underlying Child Pugh B liver cirrhosis. Cancer 118, 5293–5301 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. S.M. Wilhelm, C. Carter, L. Tang, D. Wilkie, A. McNabola, H. Rong, C. Chen, X. Zhang, P. Vincent, M. McHugh, Y. Cao, J. Shujath, S. Gawlak, D. Eveleigh, B. Rowley, L. Liu, L. Adnane, M. Lynch, D. Auclair, I.T. Aylor, R. Gedrich, A. Voznesensky, B. Riedl, L.E. Post, G. Bollag, P.A. Trail, BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64, 7099–7109 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. E. Ciamporcero, K.M. Miles, R. Adelaiye, S. Ramakrishnan, L. Shen, S. Ku, S. Pizzimenti, B. Sennino, G. Barrera, R. Pili, Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther 14, 101–110 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. H.K. Sanoff, Y. Chang, J.L. Lund, B.H. O’Neil, S.B. Dusetzina, Sorafenib effectiveness in advanced hepatocellular carcinoma. Oncologist 21, 1113–1120 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  6. M. Piya, Impact of gut hormone FGF-19 on type-2 diabetes and mitochondrial recovery in a prospective study of obese diabetic women undergoing bariatric surgery. BMC Med 15, 34 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  7. S. Jones, Mini-review: endocrine actions of fibroblast growth factor 19. Mol Pharm 5, 42–48 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. H. Zhao, F. Lv, G. Liang, X. Huang, G. Wu, W. Zhang, L. Yu, L. Shi, Y .Teng, FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β-catenin signaling cascade via FGFR4 activation. Oncotarget 7, 13575–13586 (2016)

  9. E.T. Sawey, M. Chanrion, C. Cai, G. Wu, J. Zhang, L. Zender, R.W. Busuttil, H. Yee, L. Stein, D.M. French, R.S. Finn, S.W. Lowe, S. Powers, Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell 19, 347–358 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Kaibori, K. Sakai, M. Ishizaki, H. Matsushima, M.A. De Velasco, K. Matsui, H. Iida, H. Kitade, A.H. Kwon, H. Nagano, H. Wada, S. Haji, T. Tsukamoto, A. Kanazawa, Y. Takeda, S. Takemura, S. Kubo, K. Nishio, Increased FGF19 copy number is frequently detected in hepatocellular carcinoma with a complete response after sorafenib treatment. Oncotarget 7, 49091–49098 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  11. L. Gao, X. Wang, Y. Tang, S. Huang, C.A.A. Hu, Y. Teng, FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J Exp Clin Cancer Res 36, 8 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  12. K. Chachlaki, J. Garthwaite, V. Prevot, The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nat Rev Endocrinol 13, 521–535 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. X. Weiming, L.Z. Liu, M. Loizidou, M.A. Hmed, I.G. Charles, The role of nitric oxide in cancer. Cell Res 12, 311–320 (2002)

    Article  Google Scholar 

  14. A.J. Burke, F.J. Sullivan, F.J. Giles, S.A. Glynn, The yin and yang of nitric oxide in cancer progression. Carcinogenesis 34, 503–512 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Teng, Y. Cai, W. Pi, L. Gao, C. Shay, Augmentation of the anticancer activity of CYT997 in human prostate cancer by inhibiting Src activity. J Hematol Oncol 10, 118 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  16. X. Xie, S. Tang, Y. Cai, W. Pi, L. Deng, G. Wu, A. Chavanieu, Y. Teng, Suppression of breast cancer metastasis through the inactivation of ADP-ribosylation factor 1. Oncotarget 7, 58111 (2016)

    PubMed  PubMed Central  Google Scholar 

  17. N.E. Sanjana, O. Shalem, F. Zhang, Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11, 783–784 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Hagel, C. Miduturu, M. Sheets, N. Rubin, W. Weng, N.S. Transky, N. Bifulco, J.L. Kim, B. Hodous, N. Brooijmans, A. Shutes, C. Winter, C. Lengauer, N.E. Kohl, T. Guzi, First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov 5, 424–437 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. J.M. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane, J.F. Blanc, J.F. Blanc, A.C. de Oliveira, A. Santoro, J.L. Raoul, A. Forner, M. Schwartz, C. Porta, S. Zeuzem, L. Bolondi, T.F. Greten, P.R. Galle, J.F. Seitz, I. Borbath, D. Häussinger, T. Giannaris, M. Shan, M. Moscovici, D. Voliotis, J. Bruix, Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359, 378–390 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. M. Yoshida, T. Yamashita, H. Okada, N. Oishi, K. Nio, T. Hayashi, Y. Nomura, T. Hayashi, Y. Asahina, M. Ohwada, H. Sunagozaka, H. Takatori, F. Colombo, L. Porretti, M. Honda, S. Kaneko, Sorafenib suppresses extrahepatic metastasis de novo in hepatocellular carcinoma through inhibition of mesenchymal cancer stem cells characterized by the expression of CD90. Sci Rep 7, 11292 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  21. H. van Malenstein, J. Dekervel, C. Verslype, E. Van Cutsem, P. Windmolders, F. Nevens, J. van Pelt, Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett 329, 74–83 (2013)

    Article  PubMed  Google Scholar 

  22. A. Villanueva, J.M. Llovet, Second-line therapies in hepatocellular carcinoma: emergence of resistance to sorafenib. Clin Cancer Res 18, 1824–1826 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. P.A. Farazi, R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6, 674–687 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. R. Medeiros, A. Morais, A. Vasconcelos, S. Costa, D. Pinto, J. Oliveira, C. Lopes, Endothelial nitric oxide synthase gene polymorphisms and genetic susceptibility to prostate cancer. Eur J Cancer Prev 11, 343–350 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. J.S. Royle, J.A. Ross, I. Ansell, P. Bollina, D.N. Tulloch, F.K. Habib, Nitric oxide donating nonsteroidal anti-inflammatory drugs induce apoptosis in human prostate cancer cell systems and human prostatic stroma via caspase-3. J Urol 172, 338–344 (2004)

    Article  PubMed  Google Scholar 

  26. L. Desnoyers, R. Pai, R. Ferrando, K. Hötzel, T. Le, J. Ross, R. Carano, A. D'Souza, J. Qing, I. Mohtashemi, A. Ashkenazi, D.M. French, Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene 27, 85–97 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. M. Zhou, X. Wang, V. Phung, D.A. Lindhout, K. Mondal, J.Y. Hsu, H. Yang, M. Humphrey, X. Ding, T. Arora, R.M. Learned, A.M. DePaoli, H. Tian, L. Ling, Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res 74, 3306–3316 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. C. Degirolamo, C. Sabbà, A. Moschetta, Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 15, 51–69 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. M. Zhou, R.M. Learned, S.J. Rossi, A.M. DePaoli, H. Tian, L. Ling, Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology 63, 914–929 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Dental College of Georgia Special Funding Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Teng.

Ethics declarations

Conflicts of interest

None of the authors has any conflicts of interest related to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Shay, C., Lv, F. et al. Implications of FGF19 on sorafenib-mediated nitric oxide production in hepatocellular carcinoma cells - a short report. Cell Oncol. 41, 85–91 (2018). https://doi.org/10.1007/s13402-017-0354-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-017-0354-4

Keywords

Navigation