Skip to main content
Log in

Pd- and Au-Decorated MoS2 Gas Sensors for Enhanced Selectivity

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

To date, chemoresistive gas sensors based on metal oxide semiconductors (MOS) have been the most attractive sensor types for the practical application. However, with the emerging concept of Internet of Everything, high operating temperatures over 300 °C of the gas sensors based on MOS must be reduced to achieve low power consumption and overcome a limited battery capacity of mobile devices. The 2-dimensional materials like MoS2 have been, therefore, one of the most recently studied materials for gas sensors with capability of operation at significantly lower temperatures. However, lacking selectivity toward various target gas species limited their application to gas sensors. Herein, we investigated the effects of noble metals (Pd and Au) decoration on the gas sensing properties of MoS2 thin films. Due to the electronic sensitization of the noble metal catalysts and the formation of Pd hydride, overall gas responses and selectivity were significantly improved toward tests gas species. These results provide clear understandings on the effects of the surface noble metal catalysts on gas sensing properties of MoS2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sundell, J.: On the history of indoor air quality and health. Indoor Air 14(s7), 51–58 (2004)

    Article  Google Scholar 

  2. Wetchakun, K., Samerjai, T., Tamaekong, N., Liewhiran, C., Siriwong, C., Kruefu, V., Wisitsoraat, A., Tuantranont, A., Phanichphant, S.: Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators, B 160(1), 580–591 (2011)

    Article  Google Scholar 

  3. Yamazoe, N., Shimanoe, K.: New perspectives of gas sensor technology. Sens. Actuators, B 138(1), 100–107 (2009)

    Article  Google Scholar 

  4. Moos, R., Sahner, K., Fleischer, M., Guth, U., Barsan, N., Weimar, U.: Solid state gas sensor research in Germany—a status report. Sensors 9, 4323 (2009)

    Article  Google Scholar 

  5. Jeon, J.-M., Shim, Y.-S., Han, S.D., Kim, D.H., Kim, Y.H., Kang, C.-Y., Kim, J.-S., Kim, M., Jang, H.W.: Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases. J. Mater. Chem. A 3, 17939 (2015)

    Article  Google Scholar 

  6. Shim, Y.-S., Kim, D.H., Jeong, H.Y., Kim, Y.H., Nahm, S.H., Kang, C.-Y., Kim, J.-S., Lee, W., Jang, H.W.: Utilization of both-side metal decoration in close-packed SnO2 nanodome arrays for ultrasensitive gas sensing. Sens. Actuators, B 213, 314 (2015)

    Article  Google Scholar 

  7. Shim, Y.-S., Moon, H.G., Kim, D.H., Zhang, L., Yoon, S.-J., Yoon, Y.S., Kang, C.-Y., Jang, H.W.: Au-decorated WO3 cross-linked nanodomes for ultrahigh sensitive and selective sensing of NO2 and C2H5OH. RSC Adv. 3, 10452 (2013)

    Article  Google Scholar 

  8. Sun, G.-J., Lee, J.K., Lee, W.I., Dwivedi, R.P., Lee, C., Ko, T.: Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors. Electron. Mater. Lett. 13(3), 260–269 (2017)

    Article  Google Scholar 

  9. Baranov, A., Spirjakin, D., Akbari, S., Somov, A.: Optimization of power consumption for gas sensor nodes: a survey. Sens. Actuators, A 233, 279 (2015)

    Article  Google Scholar 

  10. Lee, K., Gatensby, R., McEvoy, N., Hallam, T., Duesberg, G.S.: High-performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25, 6699 (2013)

    Article  Google Scholar 

  11. Liu, X., Ma, T., Pinna, N., Zhang, J.: Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27, 1702168 (2017)

    Article  Google Scholar 

  12. Kim, Y.H., Kim, S.J., Kim, Y.-J., Shim, Y.-S., Kim, S.Y., Hong, B.H., Jang, H.W.: Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9(10), 10453–10460 (2015)

    Article  Google Scholar 

  13. Kim, Y.H., Park, J.S., Choi, Y.-R., Park, S.Y., Lee, S.Y., Sohn, W., Shim, Y.-S., Lee, J.-H., Park, C.R., Choi, Y.S., Hong, B.H., Lee, J.H., Lee, W.H., Lee, D., Jang, H.W.: Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels. J. Mater. Chem. A 5(36), 19116–19125 (2017)

    Article  Google Scholar 

  14. Long, H., Harley-Trochimczyk, A., Pham, T., Tang, Z., Shi, T., Zettl, A., Carraro, C., Worsley, M.A., Maboudian, R.: High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26, 5158–5165 (2016)

    Article  Google Scholar 

  15. Yang, S., Jiang, C., Wei, S.: Gas sensing in 2D materials. Appl. Phys. Rev. 4, 021304 (2017)

    Article  Google Scholar 

  16. Agrawal, A.V., Kumar, R., Venkatesan, S., Zakhidov, A., Zhu, Z., Bao, J., Kumar, M., Kumar, M.: Fast detection and low power hydrogen sensor using edge-oriented vertically aligned 3-D network of MoS2 flakes at room temperature. Appl. Phys. Lett. 111, 093102 (2017)

    Article  Google Scholar 

  17. Park, S.Y., Kim, Y.H., Lee, S.Y., Sohn, W., Lee, J.E., Kim, D.H., Shim, Y.-S., Kwon, K.C., Choi, K.S., Yoo, H.J., Suh, J.M., Ko, M., Lee, J.-H., Lee, M.J., Kim, S.Y., Lee, M.H., Jang, H.W.: Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6(12), 5016–5024 (2018)

    Article  Google Scholar 

  18. Park, S.Y., Lee, J.E., Kim, Y.H., Kim, J.J., Shim, Y.-S., Kim, S.Y., Lee, M.H., Jang, H.W.: Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. Sens. Actuators, B 258, 775–782 (2018)

    Article  Google Scholar 

  19. Cho, S.-Y., Kim, S.J., Lee, Y., Kim, J.-S., Jung, W.-B., Yoo, H.-W., Kim, J., Jung, H.-T.: Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 9, 9314–9321 (2015)

    Article  Google Scholar 

  20. Shim, Y.-S., Kwon, K.C., Suh, J.M., Choi, K.S., Song, Y.G., Sohn, W., Choi, S., Hong, K., Jeon, J.-M., Hong, S.-P., Kim, S., Kim, S.Y., Kang, C.-Y., Jang, H.W.: Synthesis of numerous edge sites in MoS2 via SiO2 nanorods platform for highly sensitive gas sensor. ACS Appl. Mater. Int. 10(37), 31594–31602 (2018)

    Article  Google Scholar 

  21. Kwon, K.C., Choi, S., Hong, K., Moon, C.W., Shim, Y.-S., Kim, D.H., Kim, T., Sohn, W., Jeon, J.-M., Lee, C.-H., Nam, K.T., Han, S., Kim, S.Y., Jang, H.W.: Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ. Sci. 9(7), 2240–2248 (2016)

    Article  Google Scholar 

  22. Kwon, K.C., Choi, S., Hong, K., Andoshe, D.M., Suh, J.M., Kim, C., Choi, K.S., Oh, J.H., Kim, S.Y., Jang, H.W.: Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production. MRS Commun. 7(2), 272–279 (2017)

    Article  Google Scholar 

  23. Kwon, K.C., Choi, S., Lee, J., Hong, K., Sohn, W., Andoshe, D.M., Choi, K.S., Kim, Y., Han, S., Kim, S.Y., Jang, H.W.: Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. J. Mater. Chem. A 5(30), 15534–15542 (2017)

    Article  Google Scholar 

  24. Kang, S.B., Kwon, K.C., Choi, K.S., Lee, R., Hong, K., Suh, J.M., Im, M.J., Sanger, A., Choi, I.Y., Kim, S.Y., Shin, J.C., Jang, H.W., Choi, K.J.: Transfer of ultrathin molybdenum disulfide and transparent nanomesh electrode onto silicon for efficient heterojunction solar cells. Nano Energy 50, 649–658 (2018)

    Article  Google Scholar 

  25. Andoshe, D.M., Jin, G., Lee, C.-S., Kim, C., Kwon, K.C., Choi, S., Sohn, W., Moon, C.W., Lee, S.H., Suh, J.M., Kang, S., Park, J., Heo, H., Kim, J.K., Han, S., Jo, M.-H., Jang, H.W.: Directly assembled 3D molybdenum disulfide on silicon wafer for efficient photoelectrochemical water reduction. Adv. Sustain. Syst. 2(3), 1700142 (2018)

    Article  Google Scholar 

  26. Suh, J.M., Sohn, W., Shim, Y.-S., Choi, J.-S., Song, Y.G., Kim, T.L., Jeon, J.-M., Kwon, K.C., Choi, K.S., Kang, C.-Y., Byun, H.-G., Jang, H.W.: p–p Heterojunction of nickel oxide-decorated cobalt oxide nanorods for enhanced sensitivity and selectivity toward volatile organic compounds. ACS Appl. Mater. Int. 10(1), 1050–1058 (2017)

    Article  Google Scholar 

  27. Suh, J.M., Shim, Y.-S., Kim, D.H., Sohn, W., Jung, Y., Lee, S.Y., Choi, S., Kim, Y.H., Jeon, J.-M., Hong, K., Kwon, K.C., Park, S.Y., Kim, C., Lee, J.-H., Kang, C.-Y., Jang, H.W.: Synergetically selective toluene sensing in hematite-decorated nickel oxide nanocorals. Adv. Mater. Technol. 2(3), 1600259 (2017)

    Article  Google Scholar 

  28. Kwon, J.-Y., Yoon, T.-S., Kim, K.-B.: Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide. J. Appl. Phys. 93(6), 3270–3278 (2003)

    Article  Google Scholar 

  29. Jeon, J.-M., Kim, T.L., Shim, Y.-S., Choi, Y.R., Choi, S., Lee, S., Kwon, K.C., Hong, S.-H., Kim, Y.-W., Kim, S.Y., Kim, M., Jang, H.W.: Microscopic evidence for strong interaction between Pd and graphene oxide that results in metal-decoration-induced reduction of graphene oxide. Adv. Mater. 29(15), 1605929 (2017)

    Article  Google Scholar 

  30. McDonnell, S., Addou, R., Buie, C., Wallace, R.M., Hinkle, C.L.: Defect-dominated doping and contact resistance in MoS2. ACS Nano 8, 2880 (2014)

    Article  Google Scholar 

  31. Cho, B., Hahm, M.G., Choi, M., Yoon, J., Kim, A.R., Lee, Y.-J., Park, S.-G., Kwon, J.-D., Kim, C.S., Song, M., Jeong, Y., Nam, K.-S., Lee, S., Yoo, T.J., Kang, C.G., Lee, B.H., Ko, H.C., Ajayan, P.M., Kim, D.-H.: Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5, 8052 (2015)

    Article  Google Scholar 

  32. Baek, D.H., Kim, J.: MoS2 gas sensor functionalized by Pd for the detection of hydrogen. Sens. Actuators, B 250, 686–691 (2017)

    Article  Google Scholar 

  33. Kong, J., Chapline, M.G., Dai, H.: Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 13(18), 1384–1386 (2001)

    Article  Google Scholar 

  34. Kwak, S., Shim, Y.-S., Yoo, Y.K., Lee, J.-H., Kim, I., Kim, J., Lee, K.H., Lee, J.H.: MEMS-Based gas sensor using PdO-decorated TiO2 thin film for highly sensitive and selective H2 detection with low power consumption. Electron. Mater. Lett. 14(3), 305–313 (2018)

    Article  Google Scholar 

  35. Ko, J.Y., Song, J.-G., Kim, Y., Choi, T., Shin, S., Lee, C.W., Lee, K., Koo, J., Lee, H., Kim, J., Lee, T., Park, J., Kim, H.: Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 10(10), 9287–9296 (2016)

    Article  Google Scholar 

  36. Yan, H., Song, P., Zhang, S., Zhang, J., Yang, Z., Wang, Q.: A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceram. Int. 42, 9327–9331 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Basic Science Research Program (2017R1A2B3009135), Future Material Discovery Program (2016M3D1A1027666), and the Nano·Material Technology Development Program (2016M3A7B4910) through the National Research Foundation of Korea, and the International Energy Joint R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (20168510011350). J. M. Suh acknowledges the Global Ph.D. Fellowship Program through the National Research Foundation of Korea funded by the Ministry of Education (2015H1A2A1033701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Won Jang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, J.M., Shim, YS., Kwon, K.C. et al. Pd- and Au-Decorated MoS2 Gas Sensors for Enhanced Selectivity. Electron. Mater. Lett. 15, 368–376 (2019). https://doi.org/10.1007/s13391-019-00128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00128-9

Keywords

Navigation