Skip to main content
Log in

Improved Device Ideality in Aged Organic Transistors

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The origin of ideality improvement in aged dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) transistors is explored. High-performance plastic transistors exhibit nontrivial enhancements under ambient conditions, in the light of emerging parameterization scheme that elucidates the linearity of the transfer curves. Unintentional carrier doping in exceptionally stable DNTT molecules is suggested as the major driver of the recovery of an ideal state of the functional devices, thoroughly investigated by analytical decoupling of the channel and contact potentials as well as numerical finite-element simulation on parametric interplays.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Mello, J., Anthony, J., Lee, S.: Organic electronics: recent developments. ChemPhysChem 16, 1099–1100 (2015)

    Article  Google Scholar 

  2. Kim, C.-H., Bonnassieux, Y., Horowitz, G.: Compact DC modeling of organic field-effect transistors: review and perspectives. IEEE Trans. Electron. Devices 61, 278–287 (2014)

    Article  Google Scholar 

  3. Blülle, B., Troisi, A., Häusermann, R., Batlogg, B.: Charge transport perpendicular to the high mobility plane in organic crystals: bandlike temperature dependence maintained despite hundredfold anisotropy. Phys. Rev. B 93, 035205 (2016)

    Article  Google Scholar 

  4. Bittle, E.G., Basham, J.I., Jackson, T.N., Jurchescu, O.D., Gundlach, D.J.: Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 7, 10908 (2016)

    Article  Google Scholar 

  5. Liu, C., Li, G., Di Pietro, R., Huang, J., Noh, Y.-Y., Liu, X., Minari, T.: Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 8, 034020 (2017)

    Article  Google Scholar 

  6. Paterson, A.F., Singh, S., Fallon, K.J., Hodsden, T., Han, Y., Schroeder, B.C., Bronstein, H., Heeney, M., McCulloch, I., Anthopoulos, T.D.: Recent progress in high-mobility organic transistors: a reality check. Adv. Mater. 31, 1801079 (2018)

    Article  Google Scholar 

  7. Choi, H.H., Cho, K., Frisbie, C.D., Sirringhaus, H., Podzorov, V.: Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17, 2–7 (2017)

    Article  Google Scholar 

  8. Jung, S., Kim, C.-H., Bonnassieux, Y., Horowitz, G.: Fundamental insights into the threshold characteristics of organic field-effect transistors. J. Phys. D Appl. Phys. 48, 035106 (2015)

    Article  Google Scholar 

  9. Park, S.K., Mourey, D.A., Han, J.-I., Anthony, J.E., Jackson, T.N.: Environmental and operational stability of solution-processed 6,13-bis(triisopropyl-silylethynyl) pentacene thin film transistors. Org. Electron. 10, 486–490 (2009)

    Article  Google Scholar 

  10. Yamamoto, T., Takimiya, K.: Facile synthesis of highly π-extended heteroarenes, dinaphtho[2,3-b:2′,3′-f]chalcogenopheno[3,2-b]chalcogenophenes, and their application to field-effect transistors. J. Am. Chem. Soc. 129, 2224–2225 (2007)

    Article  Google Scholar 

  11. Zschieschang, U., Ante, F., Kälblein, D., Yamamoto, T., Takimiya, K., Kuwabara, H., Ikeda, M., Sekitani, T., Someya, T., Blochwitz-Nimoth, J., Klauk, H.: Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability. Org. Electron. 12, 1370–1375 (2011)

    Article  Google Scholar 

  12. Kim, C.-H., Kymissis, I.: Graphene–organic hybrid electronics. J. Mater. Chem. C 5, 4598–4613 (2017)

    Article  Google Scholar 

  13. Natali, D., Caironi, M.: Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods. Adv. Mater. 24, 1357–1387 (2012)

    Article  Google Scholar 

  14. Estrada, M., Cerdeira, A., Puigdollers, J., Reséndiz, L., Pallares, J., Marsal, L.F., Voz, C., Iñiguez, B.: Accurate modeling and parameter extraction method for organic TFTs. Solid-State Electron. 49, 1009–1016 (2005)

    Article  Google Scholar 

  15. Hasegawa, Y., Yamada, Y., Hosokai, T., Koswattage, K.R., Yano, M., Wakayama, Y., Sasaki, M.: Overlapping of frontier orbitals in well-defined dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene and picene monolayers. J. Phys. Chem. C 120, 21536–21542 (2016)

    Article  Google Scholar 

  16. Kim, C.-H., Hlaing, H., Payne, M.M., Yager, K.G., Bonnassieux, Y., Horowitz, G., Anthony, J.E., Kymissis, I.: Strongly correlated alignment of fluorinated 5,11-bis (triethylgermylethynyl)anthradithiophene crystallites in solution-processed field-effect transistors. ChemPhysChem 15, 2913–2916 (2014)

    Article  Google Scholar 

  17. Bürgi, L., Richards, T.J., Friend, R.H., Sirringhaus, H.: Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 94, 6129–6137 (2003)

    Article  Google Scholar 

  18. Chiarella, F., Barra, M., Carella, A., Parlato, L., Sarnelli, E., Cassinese, A.: Contact-resistance effects in PDI8-CN2 n-type thin-film transistors investigated by Kelvin-probe potentiometry. Org. Electron. 28, 299–305 (2016)

    Article  Google Scholar 

  19. Kim, C.H., Bonnassieux, Y., Horowitz, G.: Fundamental benefits of the staggered geometry for organic field-effect transistors. IEEE Electron. Device Lett. 32, 1302–1304 (2011)

    Article  Google Scholar 

  20. Wang, S.D., Yan, Y., Tsukagoshi, K.: Understanding contact behavior in organic thin film transistors. Appl. Phys. Lett. 97, 063307 (2010)

    Article  Google Scholar 

  21. Kim, C.H., Yaghmazadeh, O., Tondelier, D., Jeong, Y.B., Bonnassieux, Y., Horowitz, G.: Capacitive behavior of pentacene-based diodes: quasistatic dielectric constant and dielectric strength. J. Appl. Phys. 109, 083710 (2011)

    Article  Google Scholar 

  22. Kim, C.H., Kisiel, K., Jung, J., Ulanski, J., Tondelier, D., Geffroy, B., Bonnassieux, Y., Horowitz, G.: Persistent photoexcitation effect on the poly(3-hexylthiophene) film: impedance measurement and modeling. Synth. Met. 162, 460–465 (2012)

    Article  Google Scholar 

  23. Kalb, W.L., Batlogg, B.: Calculating the trap density of states in organic field-effect transistors from experiment: a comparison of different methods. Phys. Rev. B 81, 035327 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Gachon University research fund of 2018 (GCU-2018-0290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, CH. Improved Device Ideality in Aged Organic Transistors. Electron. Mater. Lett. 15, 166–170 (2019). https://doi.org/10.1007/s13391-018-00112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-00112-9

Keywords

Navigation