Skip to main content
Log in

Variation in Structural, Electrical and Optical Properties of Selenium Nanowires After Irradiation with Ni6+ Ions

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The effect of Ni ion irradiation on selenium nanowires of 80 nm diameter is studied in the present work. Se nanowires were prepared by using electrodeposition technique in polycarbonate membrane. Changes in the structural, optical and electrical properties are studied using XRD, UV/Vis spectroscopy and current–voltage characteristics, of the pristine and irradiated samples. X-ray diffraction study confirms the variation in peak intensity without any shifting in peak position. Variation in texture coefficient and grain size was clearly observed which is a consequence of changing plane orientation, irradiation induced grain growth and grain fragmentation. A decrease in the optical band gap takes place due to interstitial energy band states in the vicinity of conduction and valence band. IVC also shows variation in the conductivity which is due to the generation of current carriers with the passage of energetic ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arnold, M.S., Avouris, P., Pan, Z.W., Wang, Z.L.: Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 107, 659–663 (2003)

    Article  Google Scholar 

  2. Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  Google Scholar 

  3. Wang, Z.L.: Piezoelectric nanogenerators based on zinc oxide nanowire. Arrays Sci. 80(312), 242–246 (2006)

    Google Scholar 

  4. Feng, X., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., Grimes, C.: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8, 3781–3786 (2008)

    Article  Google Scholar 

  5. Gates, B., Mayers, B., Cattle, B., Xia, Y.: Synthesis and characterization of uniform nanowires of trigonal selenium. Adv. Funct. Mater. 12, 219 (2002)

    Article  Google Scholar 

  6. Shoaf, C.R., Heizer, W.D., Caplow, M.: Uptake of the components of phenylalanylphenylalanine and maltose by intestinal epithelium. Biochim. Biophys. Acta Biomembr. 600, 939–949 (1980)

    Article  Google Scholar 

  7. Liao, F., Han, X., Zhang, Y., Chen, H., Xu, C.: CTAB-assisted solvothermal synthesis of ultralong t-selenium nanowires and bundles using glucose as green reducing agent. Mater. Lett. 214, 41–44 (2018)

    Article  Google Scholar 

  8. Kumar, N., Kumar, R., Kumar, S., Chakarvarti, S.K.: Microstructural, optical and electrical investigations of large scale selenium nanowires prepared by template electrodeposition. J. Mater. Sci. Mater. Electron. 25, 3537–3542 (2014)

    Article  Google Scholar 

  9. Steichen, M., Dale, P.: Synthesis of trigonal selenium nanorods by electrodeposition from an ionic liquid at high temperature. Electrochem. Commun. 13, 865–868 (2011)

    Article  Google Scholar 

  10. Chen, H., Shin, D.W., Nam, J.G., Kwon, K.W., Yoo, J.B.: Selenium nanowires and nanotubes synthesized via a facile template-free solution method. Mater. Res. Bull. 45, 699–704 (2010)

    Article  Google Scholar 

  11. Huczko, A.: Template-based synthesis of nanomaterials. Appl. Phys. A 70(4), 365–376 (2000)

    Article  Google Scholar 

  12. Jain, I.P., Agarwal, G.: Ion beam induced surface and interface engineering. Surf. Sci. Rep. 66, 77–172 (2011)

    Article  Google Scholar 

  13. Avasthi, D.: Modification and characterisation of materials by swift heavy ions. Def. Sci. J. 59, 401–412 (2009)

    Article  Google Scholar 

  14. Kanjilal, D.: Swift heavy ion-induced modification and track formation in materials. Curr. Sci. 80, 1560–1566 (2001)

    Google Scholar 

  15. Kumar, V., Jaiswal, M.K., Gupta, R., Ram, J., Sulania, I., Ojha, S., et al.: Effect of low energy (keV) ion irradiation on structural, optical and morphological properties of SnO2–TiO2 nanocomposite thin films. J. Mater. Sci. Mater. Electron. 29(15), 13328–13336 (2018)

    Article  Google Scholar 

  16. Chauhan, V., Gupta, T., Koratkar, N., Kumar, R.: Studies of the electronic excitation modifications induced by SHI of Au ions in RF sputtered ZrO2 thin films. Mater. Sci. Semicond. Process. 88, 262–272 (2018)

    Article  Google Scholar 

  17. Kumar, R., De, U., Prasad, R.: Physical and chemical response of 70 MeV carbon ion irradiated polyether sulphone polymer. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 248(2), 279–283 (2006)

    Article  Google Scholar 

  18. McPherson, M.: Infrared photoconduction in radiation-damaged silicon diodes. J. Opt. A Pure Appl. Opt. 7, S325–S330 (2005)

    Article  Google Scholar 

  19. Pillai, V.R.V., Khamari, S.K., Dixit, V.K., Ganguli, T., Kher, S., Oak, S.M.: Effect of γ-ray irradiation on breakdown voltage, ideality factor, dark current and series resistance of GaAs p–i–n diode. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip 685, 41–45 (2012)

    Article  Google Scholar 

  20. Choudhary, R., Chauhan, R.P.: Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films. Electron. Mater. Lett. 13(4), 330–338 (2017)

    Article  Google Scholar 

  21. Mishra, M., Alwarappan, S., Kanjilal, D., Mohanty, T.: The effect of low energy nitrogen ion implantation on graphene nanosheets. Electron. Mater. Lett. 14(4), 488–498 (2018)

    Article  Google Scholar 

  22. Panchal, S., Chauhan, R.P.: Lithium ion beam impact on selenium nanowires. Phys. E Low Dimens. Syst. Nanostruct. 87, 37–43 (2017)

    Article  Google Scholar 

  23. Panchal, S., Chauhan, R.P.: Krypton ion implantation effect on selenium nanowires. Phys. Lett. A 381, 2636–2642 (2017)

    Article  Google Scholar 

  24. Gehlawat, D., Chauhan, R.P.: Swift heavy ions induced variation in the electronic transport through Cu nanowires. Mater. Chem. Phys. 145, 60–67 (2014)

    Article  Google Scholar 

  25. Narula, C., Chauhan, R.P.: High dose gamma ray exposure effect on the properties of CdSe nanowires. Radiat. Phys. Chem. 144, 405–412 (2018)

    Article  Google Scholar 

  26. Paroni, R.: Optimal bounds on texture coefficients. J. Elast. Phys. Sci. Solids 60(1), 19–34 (2000)

    Google Scholar 

  27. Cullity, B.D.: Elements of X-ray Diffraction, 2nd edn. Addison-Wesley Publishing Company Inc, Reading (1978)

    Google Scholar 

  28. Barrett, C.S., Massalski, T.B.: Structure of metals: crystallographic methods, principles and data. In: International Series on Materials Science and Technology, vol. 35, 3rd edn, pp. 1–654. Pergamon (1980)

  29. Harris, G.B.: Quantitative measurement of preferred orientation in rolled uranium bars. Philos. Mag. J. Sci. 43, 113–123 (1952)

    Article  Google Scholar 

  30. Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction, 3rd edn Prentice Hall. New York, pp. 174–177 (2001)

  31. Stokes, A.R., Wilson, A.J.C.: The diffraction of X rays by distorted crystal aggregates—I. Proc. Phys. Soc. 56, 174–181 (1944)

    Article  Google Scholar 

  32. Williamson, G., Hall, W.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  33. Tauc, J., Menth, A.: States in the gap. J. Non Cryst. Solids 8–10, 569–585 (1972)

    Article  Google Scholar 

  34. Mohanta, D., Nath, S.S., Mishra, N.C., Choudhury, A.: Irradiation induced grain growth and surface emission enhancement of chemically tailored ZnS: Mn/PVOH nanoparticles by Cl+9 ion impact. Bull. Mater. Sci. 26, 289–294 (2003)

    Article  Google Scholar 

  35. Thakurdesai, M., Mahadkar, A., Kulriya, P.K., Kanjilal, D., Bhattacharyya, V.: Synthesis of nanodimensional TiO2 thin films using energetic ion beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 266, 1343–1348 (2008)

    Article  Google Scholar 

  36. Townsend, P.D., Chandler, P.J., Zhang, L.: Optical Effects of Ion Implantation, vol. 13. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  37. Talin, A.A., Léonard, F., Swartzentruber, B.S., Wang, X., Hersee, S.D.: Unusually strong space-charge-limited current in thin wires. Phys. Rev. Lett. 101(7), 76802 (2008)

    Article  Google Scholar 

  38. Léonard, F., Tersoff, J.: Novel length scales in nanotube devices. Phys. Rev. Lett. 83, 5174–5177 (1999)

    Article  Google Scholar 

  39. Gu, Y., Lauhon, L.J.: Space-charge-limited current in nanowires depleted by oxygen adsorption. Appl. Phys. Lett. 89, 143102 (2006)

    Article  Google Scholar 

  40. Schricker, A.D., Davidson, F.M., Wiacek, R.J., Korgel, B.A.: Space charge limited currents and trap concentrations in GaAs nanowires. Nanotechnology 17, 2681–2688 (2006)

    Article  Google Scholar 

  41. Kannappan, P., Asokan, K., Krishna, J.B.M., Dhanasekaran, R.: Effect of SHI irradiation on structural, surface morphological and optical studies of CVT grown ZnSSe single crystals. J. Alloys Compd. 580, 284–289 (2013)

    Article  Google Scholar 

  42. Kumar, N., Kumar, R., Kumar, S., Chakarvarti, S.K.: Modifications in optical and electrical properties of selenium nanowire arrays using ion beam irradiation. Appl. Phys. A 121, 571–579 (2015)

    Article  Google Scholar 

  43. Rani, S., Puri, N.K., Roy, S.C., Bhatnagar, M.C., Kanjilal, D.: Effect of swift heavy ion irradiation on structure, optical, and gas sensing properties of SnO2 thin films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266, 1987–1992 (2008)

    Article  Google Scholar 

  44. Veit, W., Diestel, H., Pregla, R.: Coupling of crossed planar multiconductor systems IEEE. Trans. Microw. Theory Tech. 38, 265–269 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to IUAC, New Delhi, India, for providing material science beam line of 15UD pelletron for irradiation of the samples. We are also thankful for the assistance provided by the technical staff during irradiation experiment. A financial support provided by IUAC in the form of Project (IUAC/XIII.7/UFR-56303) also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchal, S., Chauhan, R.P. Variation in Structural, Electrical and Optical Properties of Selenium Nanowires After Irradiation with Ni6+ Ions. Electron. Mater. Lett. 15, 216–226 (2019). https://doi.org/10.1007/s13391-018-00106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-00106-7

Keywords

Navigation