Skip to main content

Advertisement

Log in

Antibacterial, Antifungal and Mosquitocidal Efficacy of Copper Nanoparticles Synthesized from Entomopathogenic Nematode: Insect–Host Relationship of Bacteria in Secondary Metabolites of Morganella morganii sp. (PMA1)

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present study deals with the use of cell-free supernatant of bacteria Morganella morganii for synthesizing copper nanoparticles and analysing its larvicidal activity on mosquito larvae. A colour change from blue to pickle green specifies the synthesis production of CuNPs. The nanoparticles were characterized using ultraviolet–visible spectrophotometry, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD pattern shows the major peaks, viz. (111), (200) and (220). SEM analysis shows that nanoparticles are in a spherical shape with a small percentage of elongated particles and size of about 13.5 ± 0.6 nm. A UV–Vis absorption peak was observed at 540 nm. FTIR analysis of nanoparticles exhibits functional groups such as aromatics, alkanes, ethers and alkyl halides. In EDaX (energy-dispersive X-ray) analysis, the peak signal confirms the presence of copper atoms that bound to the synthesized nanoparticles. The synthesized copper nanoparticles were tested for larvicidal efficacy at different time intervals. The above result shows that the copper nanoparticles produce increased toxicity in a time- and dose-dependent manner. An antibacterial and antifungal activity was tested against clinical pathogens, and the highest zone of inhibition was found to be in E. coli, B. subtilis, A. niger, M. anisopliae and Verticillium sp. This study shows that CuNPs possess a good antimicrobial and insecticidal activity which can be explored for commercial purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ali, M.A.; Rehman, I.; Iqbal, A.; Din, S.; Rao, A.Q.; Latif, A.; Husnain, T.: Nanotechnology, a new frontier in Agriculture. Adv. Life Sci. 1(3), 129–138 (2014)

    Google Scholar 

  2. Bhushan, B. (ed.): Springer Handbook of Nanotechnology. Springer, Berlin (2017)

    Google Scholar 

  3. Saeed, K.; Khan, I.; Khan, I.: Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 18 (2017).

  4. Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C.: Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34(7), 588–599 (2016)

    Article  Google Scholar 

  5. Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.: Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42(18), 4591–4602 (2008)

    Article  Google Scholar 

  6. Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K.: Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 44, 278–284 (2014)

    Article  Google Scholar 

  7. Besinis, A.; De Peralta, T.; Handy, R.D.: The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8(1), 1–16 (2014)

    Article  Google Scholar 

  8. Shafie, A.; Roslan, M.A.; Ngui, R.; Lim, Y.A.L.; Sulaiman, W.Y.W.: Mosquito biology and mosquito-borne disease awareness among island communities in Malaysia. J. Am. Mosq. Contr. A. 32(4), 273–282 (2016)

    Article  Google Scholar 

  9. Soni, N.; Prakash, S.: Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep. Parasitol. 2, 1–7 (2012)

    Google Scholar 

  10. Hazra, D.K.; Samanta, A.; Karmakar, R.; Sen, K.; Bakshi, P.: Mosquito vector management knowledge, attitude, practices and future of user and environment friendly new generation botanical mosquitocide formulations: a review. Int. J. Chem. Sci. 5(3), 32–37 (2017)

    Google Scholar 

  11. Hemingway, J.; Beaty, B.J.; Rowland, M.; Scott, T.W.; Sharp, B.L.: The Innovative Vector Control Consortium: improved control of mosquito-borne diseases. Trends Parasitol. 22(7), 308–312 (2006)

    Article  Google Scholar 

  12. Benelli, G.: Plant-mediated synthesis of nanoparticles: a newer and safer tool against mosquito-borne diseases? Asian Pac. J. Trop. Biomed. 6(4), 353–354 (2016)

    Article  Google Scholar 

  13. Stadler, T.; Buteler, M.; Weaver, D.K.: Novel use of nanostructured alumina as an insecticide. Pest Manag. Sci 66(6), 577–579 (2010)

    Google Scholar 

  14. Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Varma, R.S.: Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116(6), 3722–3811 (2016)

    Article  Google Scholar 

  15. Kruk, T.; Szczepanowicz, K.; Stefarska, J.; Socha, R.P.; Warszynski, P.: Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf. B 128, 17–22 (2015)

    Article  Google Scholar 

  16. Emelianoff, V.; Le Brun, N.; Pagès, S.; Stock, S.P.; Tailliez, P.; Moulia, C.; Sicard, M.: Isolation and identification of entomopathogenic nematodes and their symbiotic bacteria from Herault and Gard (Southern France). J. Invertebr. Pathol. 98(2), 211–217 (2008)

    Article  Google Scholar 

  17. Glaeser, S.P.; Tobias, N.J.; Thanwisai, A.; Chantratita, N.; Bode, H.B.; Kampfer, P.: Photorhabdus luminescens subsp. namnaonensis subsp. nov., isolated from Heterorhabditis baujardi nematodes. Int. J. Syst. Evol. Microbiol. 67(4), 1046–1051 (2017)

    Article  Google Scholar 

  18. Eski, A.; Cakici, F.O.; Gullu, M.; Muratoglu, H.; Demirbag, Z.; Demir, I.: Identification and pathogenicity of bacteria in the Mediterranean corn borer Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae). Turk. J. Biol. 39(1), 31–48 (2015)

    Article  Google Scholar 

  19. Vyas, R.V.; Patel, B.; Maghodia, A.; Patel, D.J.: Significance of metabolites of native Xenorhabdus, a bacterial symbiont of Steinernema, for suppression of collar rot and root knot diseases of groundnut. Indian J. Biotechnol. 7, 371–377 (2008)

    Google Scholar 

  20. Nishiwaki, H.; Ito, K.; Shimomura, M.; Nakashima, K.; Matsuda, K.: Insecticidal bacteria isolated from predatory larvae of the antlion species Myrmeleon bore (Neuroptera: Myrmeleontidae). j. Inverte. Pathol. 96(1), 80–88 (2007)

    Article  Google Scholar 

  21. Webster, J.; Chen, G.; Hu, K.: Bacterial metabolites. Entomopathog. Nematol. 99–114

  22. Condorelli, G.G.; Costanzo, I.L.; Fragala, I.L.; Giuffrida, S.; Ventimiglia, G.: A single photochemical route for the formation of both copper nanoparticles and patterned nanostructured films. J. Mater. Chem. 13(10), 2409–2411 (2003)

    Article  Google Scholar 

  23. Boemare, N.; Givaudan, A.; Brehelin, M.; Laumond, C.: Symbiosis and pathogenicity of nematode-bacterium complexes. Symbiosis (1997)

  24. Prabhu, R.; Thenmozhi, R.; Thajuddin, N.; Suganthy, N.: In vitro assessment of antimicrobial, antibiofilm and larvicidal activities of bioactive nickel metal organic framework. J. Drug Deliv. Sci. Technol. 56, 101560 (2020)

    Article  Google Scholar 

  25. Arjunan, N.K.; Murugan, K.; Rejeeth, C.; Madhiyazhagan, P.; Barnard, D.R.: Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis. 12(3), 262–268 (2012)

    Article  Google Scholar 

  26. Abbott, W.S.: Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–266 (1925)

    Article  Google Scholar 

  27. Magaldi, S.; Mata-Essayag, S.; De Capriles, C.H.; Perez, C.; Colella, M.T.; Olaizola, C.; Ontiveros, Y.: Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 8(1), 39–45 (2004)

    Article  Google Scholar 

  28. Manjusha, R.; Kora, A.J.; Arunachalam, J.: Superior bactericidal activity of SDS capped silver nanoparticles: synthesis and characterization. Mater. Sci. Eng., C 29(7), 2104–2109 (2009)

    Article  Google Scholar 

  29. Aktar, W.; Sengupta, D.; Chowdhury, A.: Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2(1), 1–12 (2009)

    Article  Google Scholar 

  30. Sharma, P.; Mohan, L.; Srivastava, C.N.: Larvicidal potential of Neriumindicum and Thujaoriertelis extracts against malaria and Japanese encephalitis vector. J. Environ. Biol. 26(4), 657–660 (2005)

    Google Scholar 

  31. Lees, R.S.; Knols, B.; Bellini, R.; Benedict, M.Q.; Bheecarry, A.; Bossin, H.C.: Review: improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop. 132S, S2–S11 (2014)

    Article  Google Scholar 

  32. Martinez, H.; Toledo, J.; Liedo, P.; Mateo, M.: Survey of heritable endosymbionts in Southern Mexico populations of the fruit fly species Anastrepha striata and A. ludens. Curr. Micro. Boil. 65, 711–718 (2012)

    Article  Google Scholar 

  33. Cox, C.R.; Gilmore, M.S.: Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 75, 1565–1576 (2007)

    Article  Google Scholar 

  34. Eivazian Kary, N.; Mohammadi, D.; Girling, R.: New reports on dixenic associations between the symbionts of entomopathogenic nematodes, Photorhabdus and Xenorhabdus, and non-symbiotic bacteria. J. Crop Prot. 6(4), 497–511 (2017)

    Google Scholar 

  35. Borkow, G.; Gabbay, J.: Copper as a biocidal tool. Curr. Med. Chem. 12(18), 2163–2175 (2005)

    Article  Google Scholar 

  36. Krithiga, N.; Jayachitra, A.; Rajalakshmi, A.: Synthesis, characterization and analysis of the effect of copper oxide nanoparticles in biological systems. An Indian J. Nano. Sci. 1(1), 6–15 (2013)

    Google Scholar 

  37. SubhankariIpsaNayak, P.L.: Antimicrobial activity of copper nanoparticles synthesised by ginger (Zingiber officinale) extract. World J. Nano Sci. Technol. 2(1), 10–13 (2013)

    Google Scholar 

  38. Yoon, K.; Byeon, J.H.; Park, J.; Hwang, J.: Susceptibility constants of E. coli and Bacillus subtilis to Ag and Cu nanoparticles. Sci. Total Environ. 373, 572–575 (2007)

    Article  Google Scholar 

  39. Das, D.; Nath, B.C.; Phukon, P.; Dolui, S.K.: Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloid Surf. B. 101, 430–433 (2013)

    Article  Google Scholar 

  40. Nabila, M.I.; Kannabiran, K.: Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal. Agric. Biotechnol. 15, 56–62 (2018)

    Article  Google Scholar 

  41. Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Rao, K.B.: Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A. Mol. Biomol. Spectrosc. 90, 78–84 (2012)

    Article  Google Scholar 

  42. Ramaswamy, S.V.P.; Narendhran, S.; Sivaraj, R.: Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities. Bull. Mater. Sci. 39(2), 361–364 (2016)

    Article  Google Scholar 

  43. Saad, E.L.; Salem, S.S.; Fouda, A.; Awad, M.A.; El-Gamal, M.S.; Abdo, A.M.: New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J. Radiat. Res. Appl. Sci. 11(3), 262–270 (2018)

    Article  Google Scholar 

  44. El-Sadawy, H.A.; El Namaky, A.H.; Hafez, E.E.; Baiome, B.A.; Ahmed, A.M.; Ashry, H.M.; Ayaad, T.H.: Silver nanoparticles enhance the larvicidal toxicity of Photorhabdus and Xenorhabdus bacterial toxins: an approach to control the filarial vector, Culex pipiens. Trop. Biomed. 35(2), 392–407 (2018)

    Google Scholar 

  45. Ghorbani, H.R.; Mehr, F.P.; Poor, A.K.: Extracellular synthesis of copper nanoparticles using culture supernatants of Salmonella typhimurium. Orient. J. Chem. 31(1), 527–529 (2015)

    Article  Google Scholar 

  46. Jang, G.G.; Jacobs, C.B.; Gresback, R.G.; Ivanov, I.N.; Meyer, H.M.; Kidder, M.: Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules. J. Mater. Chem. C. 3, 644–650 (2015)

    Article  Google Scholar 

  47. Rahman, A.; Ismail, A.; Jumbianti, D.; Magdalena, S.; Sudrajat, H.: Synthesis of copper oxide nano particles by using Phormidium cyanobacterium. Indones. J. Chem. 9(3), 355–360 (2009)

    Article  Google Scholar 

  48. Parikh, R.Y.; Singh, S.; Prasad, B.L.V.; Patole, M.S.; Sastry, M.; Shouche, Y.S.: Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp. towards understanding biochemical synthesis mechanism. Chem. Bio. Chem. 9(9), 1415–1422 (2008)

    Article  Google Scholar 

  49. Selvan, S.M.; Anand, K.V.; Govindaraju, K.; Tamilselvan, S.; Kumar, V.G.; Subramanian, K.S.; Raja, K.: Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti. IET Nanobiotechnol. 12(8), 1042–1046 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India, for providing the infrastructural facility for carrying out this research work. We would also acknowledge the instrument support from DST-FIST (SR/FIST/LSI-673/2016), Department of Biotechnology, Periyar University, Salem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthugounder Subramanian Shivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalitha, K., Kalaimurgan, D., Nithya, K. et al. Antibacterial, Antifungal and Mosquitocidal Efficacy of Copper Nanoparticles Synthesized from Entomopathogenic Nematode: Insect–Host Relationship of Bacteria in Secondary Metabolites of Morganella morganii sp. (PMA1). Arab J Sci Eng 45, 4489–4501 (2020). https://doi.org/10.1007/s13369-020-04487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04487-6

Keywords

Navigation