Skip to main content
Log in

Estimation of Flood Environmental Effects Using Flood Zone Mapping Techniques in Halilrood Kerman, Iran

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone-mapping techniques. The intended flood zone map was introduced in four steps. Steps 1–3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using flood zone-mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 to 225 ha and also it can decrease 20 % of flood peak intensity. As a result, 14 % of flood zone in the study area can be saved environmentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HEC-HMS:

Hydrologic engineering center-hydrologic modeling system

HEC-RAS:

Hydrologic engineering center-river analysis system

GIS:

Geographic information system

NEXRAD:

Next generation radar

DEM:

OEDA added 3 mol propylene oxide

IfSAR:

Interferometric synthetic aperture radar

H.R.:

Horizontal resolution

V.A.:

Vertical accuracy

RMSE:

Root mean squared error

NED:

National elevation data

SRTM:

Shuttle radar topography mission

LiDAR:

Light ranging and detection

SCS:

Conservation service

CN:

Curve number

WMS:

Watershed modeling system

LSI:

Langelier saturation index

RI:

Risener index

DO:

Dissolved oxygen

BOD:

Biochemical oxygen demand

COD:

Chemical oxygen demand

TSS:

Total suspended solids

TDS:

Total dissolved solids

Cu:

Copper

Fe:

Iron

PSU:

Practical salinity unit

uS:

Units of micro Siemens

CL:

Clay loam

SL:

Sandy loam

SiCL:

Silty clay loam

SCL:

Sandy clay loam

References

  1. Sun D.-P., Xue H., Wang P.-T., Lu R.-l., Liao X.-l.: 2-D numerical simulation of flooding effects caused by South-to-North water transfer project. J. Hydrodyn. Ser. B 20(5), 662–667 (2008)

    Article  Google Scholar 

  2. Amini A., Ali T.M., Ghazali A.H.B., Aziz A.A., Akib S.M.: Impacts of land-use change on streamflows in the Damansara Watershed, Malaysia. Arab. J. Sci. Eng. 36(5), 713–720 (2011)

    Article  Google Scholar 

  3. Hinderer M.: From gullies to mountain belts: a review of sediment budgets at various scales. Sediment. Geol. 280, 21–59 (2012)

    Article  Google Scholar 

  4. Dikbas F., Firat M., Koc A.C., Gungor M.: Defining homogeneous regions for streamflow processes in Turkey using a K-means clustering method. Arab. J. Sci. Eng. 38(6), 1313–1319 (2013)

    Article  Google Scholar 

  5. Alexandrov Y., Laronne J.B., Reid I.: Suspended sediment concentration and its variation with water discharge in a dryland ephemeral channel, northern Negev, Israel. J. Arid Environ. 53(1), 73–84 (2003)

    Article  Google Scholar 

  6. Dunkerley D., Brown K.: Flow behaviour, suspended sediment transport and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream. Hydrol. Process. 13(11), 1577–1588 (1999)

    Article  Google Scholar 

  7. Boardman J., Evans R., Ford J.: Muddy floods on the South Downs, southern England: problem and responses. Environ. Sci. Policy 6(1), 69–83 (2003)

    Article  Google Scholar 

  8. Svendsen J., Stollhofen H., Krapf C.B., Stanistreet I.G.: Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sediment. Geol. 160(1), 7–31 (2003)

    Article  Google Scholar 

  9. Auynirundronkool K., Chen N., Peng C., Yang C., Gong J., Silapathong C.: Flood detection and mapping of the Thailand Central plain using RADARSAT and MODIS under a sensor web environment. Int. J. Appl. Earth Obs. Geoinf. 14(1), 245–255 (2012)

    Article  Google Scholar 

  10. Xia C., Pahl-Wostl C.: Understanding the development of flood management in the middle Yangtze River. Environ. Innov. Soc. Transit. 5, 60–75 (2012)

    Article  Google Scholar 

  11. Feldman, A.D.: Hydrologic modeling system HEC-HMS: technical reference manual. US Army Corps of Engineers, Hydrologic Engineering Center (2000)

  12. Halwatura D., Najim M.: Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Model. Softw. 46, 155–162 (2013)

    Article  Google Scholar 

  13. Bajwa, H.; Tim, U.: Toward immersive virtual environments for GIS-based floodplain modeling and visualization. In: Proceedings of 22nd ESRI User Conference 2002

  14. Horritt M., Bates P.: Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 268(1), 87–99 (2002)

    Article  Google Scholar 

  15. Fan C., Ko C.-H., Wang W.-S.: An innovative modeling approach using Qual2K and HEC-RAS integration to assess the impact of tidal effect on River Water quality simulation. J. Environ. Manag. 90(5), 1824–1832 (2009)

    Article  Google Scholar 

  16. Knebl M., Yang Z.-L., Hutchison K., Maidment D.: Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. J. Environ. Manag. 75(4), 325–336 (2005)

    Article  Google Scholar 

  17. Anderson M., Chen Z.-Q., Kavvas M., Feldman A.: Coupling HEC-HMS with atmospheric models for prediction of watershed runoff. J. Hydrol. Eng. 7(4), 312–318 (2002)

    Article  Google Scholar 

  18. Hadadin N., Tarawneh Z., Shatanawi K., Banihani Q., Hamdi M.R.: Hydrological analysis for floodplain hazard of Jeddah’s drainage basin, Saudi Arabia. Arab. J. Sci. Eng. 38(12), 3275–3287 (2013)

    Article  Google Scholar 

  19. Siddiqui Q.T.M., Hashmi H.N., Ghumman A.R.: Flood inundation modeling for a watershed in the pothowar region of Pakistan. Arab. J. Sci. Eng. 36(7), 1203–1220 (2011)

    Article  Google Scholar 

  20. Liu X., Zhao X.: The Research on Flood Character Grid Base on GIS. Energy Proced. 16, 1225–1229 (2012)

    Article  Google Scholar 

  21. Smith P.N.: Hydrologic data development system. Transportation Research Record: J. Transp. Res. Board 1599(1), 118–127 (1997)

    Article  Google Scholar 

  22. Naeem U.A., Nisar H., Ejaz N.: Development of Empirical Equations for the Peak Flood of the Chenab River Using GIS. Arab. J. Sci. Eng. 37(4), 945–954 (2012)

    Article  Google Scholar 

  23. Marston R.A., Mills J.D., Wrazien D.R., Bassett B., Splinter D.K.: Effects of Jackson Lake Dam on the Snake River and its floodplain, Grand Teton National Park, Wyoming, USA. Geomorphol. 71(1), 79–98 (2005)

    Article  Google Scholar 

  24. Lianqing X., Zhenchun H., Xiaoqun L., Yongkun L.: Numerical Simulation and Optimal System Scheduling on Flood Diversion and Storage in Dongting Basin, China. Procedia Environ. Sci. 12, 1089–1096 (2012)

    Article  Google Scholar 

  25. Charrier R., Li Y.: Assessing resolution and source effects of digital elevation models on automated floodplain delineation: A case study from the Camp Creek Watershed, Missouri. Appl. Geogr. 34, 38–46 (2012)

    Article  Google Scholar 

  26. Vazquez R., Feyen J.: Assessment of the effects of DEM gridding on the predictions of basin runoff using MIKE SHE and a modelling resolution of 600m. J. Hydrol. 334(1), 73–87 (2007)

    Article  Google Scholar 

  27. Sanders B.F.: Evaluation of on-line DEMs for flood inundation modeling. Adv. Water Res. 30(8), 1831–1843 (2007)

    Article  Google Scholar 

  28. Khazaei, M.R.; Zahabiyoun, B.; Saghafian, B.; Ahmadi, S.: Development of an automatic calibration tool using genetic algorithm for the ARNO Conceptual Rainfall–Runoff Model. Arab. J. Sci. Eng. 39, 2535–2549 (2014)

  29. Scanlon B.R., Healy R.W., Cook P.G.: Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 10(1), 18–39 (2002)

    Article  Google Scholar 

  30. Aronica G.T., Candela A., Fabio P., Santoro M.: Estimation of flood inundation probabilities using global hazard indexes based on hydrodynamic variables. Phys. Chem. Earth, Parts A/B/C 42, 119–129 (2012)

    Article  Google Scholar 

  31. Metcalf I.: Wastewater Engineering: Treatment and Reuse. McGraw-Hill, New York (2003)

    Google Scholar 

  32. Andrew, D.: Standard methods for the examination of water and wastewater. None (2005)

  33. Elmolla E.S., Chaudhuri M.: Combined photo-Fenton–SBR process for antibiotic wastewater treatment. J. Hazard. Mater. 192(3), 1418–1426 (2011)

    Article  Google Scholar 

  34. Haque C.E., Kolba M., Morton P., Quinn N.P.: Public involvement in the Red River Basin management decisions and preparedness for the next flood. Glob. Environ. Chang. Part B: Environ. Hazard. 4(4), 87–104 (2002)

    Article  Google Scholar 

  35. Lind N., Hartford D., Assaf H.: Hydrodynamic models of human stability in a floods. JAWRA J. Am. Water Resour. Assoc. 40(1), 89–96 (2004)

    Article  Google Scholar 

  36. Erdlenbruch K., Thoyer S., Grelot F., Kast R., Enjolras G.: Risk-sharing policies in the context of the French Flood Prevention Action Programmes. J. Environ. Manag. 91(2), 363–369 (2009)

    Article  Google Scholar 

  37. Mauclaire L., Gibert J.: Effects of pumping and floods on groundwater quality: a case study of the Grand Gravier well field (Rhône, France). Hydrobiologia 389(1-3), 141–151 (1998)

    Article  Google Scholar 

  38. Claret C., Fontvieille D.: Characteristics of biofilm assemblages in two contrasted hydrodynamic and trophic contexts. Microb. Ecol. 34(1), 49–57 (1997)

    Article  Google Scholar 

  39. Baky A., Zaman A., Khan A.: Managing flood flows for Crop Production Risk Management with Hydraulic and GIS Modeling: case study of Agricultural Areas in Shariatpur. APCBEE Procedia 1, 318–324 (2012)

    Article  Google Scholar 

  40. Howitt J.A., Baldwin D.S., Rees G.N., Williams J.L.: Modelling blackwater: predicting water quality during flooding of lowland river forests. Ecol. Model. 203(3), 229–242 (2007)

    Article  Google Scholar 

  41. Tariq M.A.U.R., van de Giesen N.: Floods and flood management in Pakistan. Phys. Chem. Earth, Parts A/B/C 47, 11–20 (2012)

    Article  Google Scholar 

  42. De-Campos A.B., Mamedov A.I., Huang C.-h.: Short-term reducing conditions decrease soil aggregation. Soil Sci. Soc. Am. J. 73(2), 550–559 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Bagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudaghpour, S., Bagheri, M. & Bagheri, Z. Estimation of Flood Environmental Effects Using Flood Zone Mapping Techniques in Halilrood Kerman, Iran. Arab J Sci Eng 40, 659–675 (2015). https://doi.org/10.1007/s13369-014-1536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1536-2

Keywords

Navigation