Skip to main content

Advertisement

Log in

Rheology of concentrated biomass

  • The 11th International Symposium on Applied Rheology Lecture
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained using torque rheometry agree with those obtained using other rheometric methods, but torque rheometry can be used at much larger solids concentration (weight fractions of insoluble solids greater than 0.2). Yield stresses decrease with severity of hydrolysis, decrease when water-soluble polymers are added (for nonhydrolyzed biomass), and increase with particle length. Experimental results are qualitatively consistent with those obtained from particle-level simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aden, A., M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, B. Wallace, L. Montague, A. Slayton, and J. Lukas, 2002, Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover, NREL Technical Report TR-510-32438.

  • Almin, K. E., P. Biel, and D. Wahren, 1967, Relating the shear modulus of fibre networks to the bulk average fiber stiffness, Svensk Papperstidn. 70, 772–774.

    Google Scholar 

  • Bennington, C., R. Kerekes, and J. Grace, 1990, The yield stress of fibre suspensions, Can. J. Chem. Eng. 68, 748–757.

    Article  CAS  Google Scholar 

  • Bergman, J. and N. Takamura, 1965, The correlation between the shear modulus of fibre networks and the individual fibre stiffness, Svensk Papperstidn. 68, 703–710.

    Google Scholar 

  • Blyler, L. L. and J. H. Daane, 1967, An analysis of Brabender torque rheometer data, Polym. Eng. Sci. 7, 178–181.

    Article  CAS  Google Scholar 

  • Bohlin VOR Rheometer Users Manual, Malvern Instruments, Westborough, MA. Bousmina, M., A. Ait-Kadi, and J. B. Faisant, 1999, Determination of shear rate and viscosity from batch mixer data, J. Rheol. 43, 415–433.

    Article  Google Scholar 

  • Bozell, J. J., L. Moens, D. C. Elliott, Y. Wang, G. G. Neuenscwander, S. W. Fitzpatrick, R. J. Bilski, and J. L. Jarnefeld, 2000, Production of levulinic acid and use as a platform chemical for derived products, Resources, Conservation and Recycling 28, 227–239.

    Article  Google Scholar 

  • Bozell, J. J. and G. R. Petersen, 2010, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited, Green Chemistry 12, 539–554.

    Article  CAS  Google Scholar 

  • Connelly, R. J. and J. L. Kokini, 2004, The effect of shear thinning and differential viscoelasticity on mixing in a model 2D mixer as determined using FEM with particle tracking, J. Non-Newt. Fluid Mech. 123, 1–17.

    Article  CAS  Google Scholar 

  • Dalpke, B. and R. Kerekes, 2005, The influence of fibre properties on the apparent yield stress of flocculated pulp suspensions, J. Pulp Paper Sci. 31, 39–43.

    CAS  Google Scholar 

  • Dodson, C. T. J., 1996, Fiber crowding, fiber contacts, and fiber flocculation, TAPPI J. 79, 211–215.

    CAS  Google Scholar 

  • Dzuy, N. Q. and D. V. Boger, 1983, Yield stress measurement for concentrated suspensions, J. Rheol. 27, 321–349.

    Article  Google Scholar 

  • Dzuy, N. Q. and D. V. Boger, 1985, Direct Yield Stress Measurement with the Vane Method, J. Rheol. 29, 335–347.

    Article  Google Scholar 

  • Ehrhardt, M. R., 2008, Rheology of Biomass, M.S. Thesis, University of Wisconsin, Madison, WI.

    Google Scholar 

  • Ehrhardt, M. R., T. O. Monz, T. W. Root, R. K. Connelly, C. T. Scott, and D. J. Klingenberg, 2010, Rheology of Dilute Acid Hydrolyzed Corn Stover at High Solids Concentration, Appl. Biochem. Biotechnol. 160, 1102–1115.

    Article  CAS  Google Scholar 

  • Goodrich, J. E. and R. S. Porter, 1967, A rheological interpretation of torque-rheometer data, Polym. Sci. Eng. 7, 45–51.

    Article  CAS  Google Scholar 

  • Jorgensen, H., J. Vibe-Pedersen, J. Larsen, and C. Felby, 2007, Liquefaction of lignocellulose at high-solids concentrations, Biotechnol. Bioeng. 96, 862–870.

    Article  Google Scholar 

  • Kerekes, R. J., 1985, The flocculation of pulp fibers, in Papermaking Raw Materials, V. Punton, ed., Mechanical Engineering Publications Ltd., London, pp. 265–310.

    Google Scholar 

  • Kerekes, R. J. and C. J. Schell, 1992, Characterization of fibre flocculation regimes by a crowding factor, J. Pulp. Paper Sci. 18, J32–J38.

    Google Scholar 

  • Kerekes, R. J., 1995, Perspectives on fibre flocculation in papermaking, in 1995 Proceedings of the International Paper Physics Conference, CPPA, Montreal, pp. 23–31.

  • Kerekes, R., 2006, Rheology of fibre suspensions in papermaking: An overview of recent research, Nordic Pulp Paper Res. J. 21, 598–612.

    Article  CAS  Google Scholar 

  • Knutsen, J. S. and M. W. Liberatore, 2009, Rheology of high-solids biomass slurries for biorefinery applications, J. Rheol. 53, 877–892.

    Article  CAS  Google Scholar 

  • Knutsen, J. S. and M. W. Liberatore, 2010, Rheology modication and enzyme kinetics of high solids cellulosic slurries, Energy Fuels 24, 3267–3274.

    Article  CAS  Google Scholar 

  • Kurath, S. F., 1959, The network and viscoelastic properties of wet pulp. I. Dynamic mechanical analysis, Tappi 42, 953–959.

    CAS  Google Scholar 

  • Lee, P. F. W. and T. Lindstrom, 1989, Effects of high molecular mass anionic polymers on paper sheet formation, Nordic Pulp Pap. Res. J. 4, 61–70.

    Article  CAS  Google Scholar 

  • Lindstrom, T., 1989, Some fundamental aspects on paper forming, in Fundamentals of Papermaking, C. F. Baker and V. W. Punton, eds., Mechanical Engineering Publishers, Ltd., London, pp. 311–412.

    Google Scholar 

  • Lu, Y., Y. Wang, G. Xu, J. Chu, Y. Zhuang, and S. Zhang, 2010, Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass, Appl. Biochem. Biotechnol. 160, 360–369.

    Article  CAS  Google Scholar 

  • Lynd, L. R., 1996, Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy, Annu. Rev. Energy Environ. 21, 403–465.

    Article  Google Scholar 

  • Meyer, R. and D. Wahren, 1964, On the elastic properties of three-dimensional fiber networks, Svensk Papperstidn. 67, 432–436.

    Google Scholar 

  • Monz, T. O., 2009, Investigation of biomass rheology in different geometries, Diplomarbeit Thesis, Stuttgart University and University of Wisconsin, Madison, WI.

    Google Scholar 

  • Pimenova, N. and T. Hanley, 2003, Measurement of rheological properties of corn stover suspensions, Appl. Biochem. Biotechnol. 106, 383–392.

    Article  Google Scholar 

  • Pimenova, N. and T. Hanley, 2004, Effect of corn stover concentration on rheological characteristics, Appl. Biochem. Biotechnol. 114, 347–360.

    Article  Google Scholar 

  • Rosgaard, L., P. Andric, K. Dam-Johansen, S. Pedersen, and A. S. Meyer, 2007, Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw, Appl. Biochem. Biotechnol. 143, 27–40.

    Article  CAS  Google Scholar 

  • Samaniuk, J. R., C. T. Scott, T. W. Root, and D. J. Klingenberg, 2011, to be submitted.

  • Schell, D. J, J. Farmer, M. Newman, and J. D. McMillan, 2003, Dilute sulfuric acid pretreatment of corn stover in pilot-scale reactor.Investigation of yields, kinetics, and enzymatic digestibilities of solids, Appl. Biochem. Biotechnol. 105, 69–85.

    Article  Google Scholar 

  • Scott, C. T., 2002, Pulp extrusion and ultra-high consistencies: selection of water-soluble polymers for process optimization, Tappi Fall Conference & Trade Fair, http://www.fpl.fs.fed.us/documnts/pdf2002/scott02a.pdf.

  • Serrano-Ruiz, J. C., D. Wang, and J. A. Dumesic, 2010a, Catalytic upgrading of levulinic acid to 5-nonanone, Green Chemistry 12, 574–577.

    Article  CAS  Google Scholar 

  • Serrano-Ruiz, J. C., D. J. Braden, R. M. West, and J. A. Dumesic, 2010b, Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen, Appl. Catalysis B: Environmental 100, 184–189.

    Article  CAS  Google Scholar 

  • Sheehan, J., A. Aden, K. Paustian, K. Killian, J. Brenner, M. Walsh, and R. Nelson, 2004, Energy and environmental aspects of using corn stover for fuel ethanol, J. Ind. Ecology 7, 117–146.

    Article  Google Scholar 

  • Singh, K. M., 1985, Flow Characteristics of High Consistency Pulp as Studied in a Concentric Cylinder Viscometer, M. S. Thesis, State University of New York, Syracuse, New York.

    Google Scholar 

  • Soszynski, R. M. and R. J. Kerekes, 1988a, Elastic interlocking of nylon fibers suspended in liquid. Part 1.Nature of cohesion among fibers, Nordic J. Pulp Paper Res. 3, 172–179.

    Article  CAS  Google Scholar 

  • Soszynski, R. M. and R. J. Kerekes, 1988b, Elastic interlocking of nylon fibers suspended in liquid. Part 2.Process of interlocking, Nordic J. Pulp Paper Res. 3, 180–184.

    Article  CAS  Google Scholar 

  • Steffe, J. F., 1996, Rheological Methods in Food Processing Engineering, 2nd ed., Freeman, East Lansing.

    Google Scholar 

  • Stickel, J. J., J. S. Knutsen, M. W. Liberatore, W. Luu, D. W. Bouseld, D. J. Klingenberg, C. T. Scott, T. W. Root, M. R. Ehrhardt, and T. O. Monz, 2009, Rheology measurements of a biomass slurry: an inter-laboratory study, Rheol. Acta 48, 1005–1015.

    Article  CAS  Google Scholar 

  • Swerin, A., R. L. Powell, and L. Odberg, 1992, Linear and nonlinear dynamic viscoelasticity of pulp fiber suspensions, Nordic Pulp Paper Res. J. 7, 126–132.

    Article  CAS  Google Scholar 

  • Switzer, L. H., 2002, Simulations of Systems of Flexible Fibers, Ph. D. thesis, University of Wisconsin-Madison.

  • Switzer, L. H. and D. J. Klingenberg, 2003, Rheology of sheared flexible fiber suspensions via fiber-level simulations, J. Rheol. 47, 759–778.

    Article  CAS  Google Scholar 

  • Thalen, N. and D. Wahren, 1964a, A new elasto-viscometer, Svensk Papperstidn. 67, 226–231.

    CAS  Google Scholar 

  • Thalen, N. and D. Wahren, 1964b, Shear modulus and ultimate shear strength of some paper pulp fiber networks, Svensk Papperstidn. 67, 259–264.

    Google Scholar 

  • Thalen, N. and D. Wahren, 1964c, An experimental investigation of the shear modulus of model fibre networks, Svensk Papperstidn. 67, 474–480.

    Google Scholar 

  • Um, B. and T. R. Hanley, 2008, A comparison of simple rheological parameters and simulation data for zymomonasmobilis fermentation broths with high substrate loading in a 3-L bioreactor, Appl. Biochem. Biotechnol. 145, 29–38.

    Article  CAS  Google Scholar 

  • Viamajala, S., J. D. McMillan, D. J. Schell, and R. T. Elander, 2009, Rheology of corn stover slurries at high solids concentrations. Effects of saccharication and particle size, Bioresource Technology 100, 925–934.

    Article  CAS  Google Scholar 

  • Wang, J., 2012, Ph. D. Thesis, University of Wisconsin, Madison, WI.

  • Wingren, A., M. Galbe, and G. Zacchi, 2003, Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identication of bottlenecks, Biotechnol. Prog. 19, 1109–1117.

    Article  CAS  Google Scholar 

  • Wooley, R., M. Ruth, J. Sheehan, K. Ibsen, H. Majdeski, and A. Galvez, 1999, Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios, NREL Technical Report TP-58026157.

  • Wyman, C. E., 2007, What is (and is not) vital to advancing cellulosic ethanol, Trends in Biotechnology 25, 153–157.

    Article  CAS  Google Scholar 

  • Zauscher, S., 1999, Polymer Mediated Surface Interactions in Pulp Fiber Suspension Rheology, Ph. D. Thesis, University of Wisconsin.

  • Zauscher, S., C. T. Scott, J. L. Willet, and D. J. Klingenberg, 2000, Pulp Extrusion at ultra-high consistencies: a new processing method for recycling wastepapers and papermill sludges, TAPPI J. 83, 62.

    CAS  Google Scholar 

  • Zauscher, S. and D. J. Klingenberg, 2000, Normal forces between cellulose surfaces measured with colloidal probe microscopy, J. Coll. Int. Sci. 229, 497–510.

    Article  CAS  Google Scholar 

  • Zauscher, S. and D. J. Klingenberg, 2001a, Friction forces between cellulose surfaces measured with colloidal probe microscopy, Coll. Surf. A 178, 213–229.

    Article  CAS  Google Scholar 

  • Zauscher, S. and D. J. Klingenberg, 2001b, Surface and friction forces between cellulose surfaces measured with colloidal probe microscopy, Nordic Pulp Pap. Res. J. 15, 459–468.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Klingenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samaniuk, J.R., Wang, J., Root, T.W. et al. Rheology of concentrated biomass. Korea-Aust. Rheol. J. 23, 237–245 (2011). https://doi.org/10.1007/s13367-011-0029-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-011-0029-z

Keywords

Navigation